This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2009 Today's Calculation Of Integral, 437

Evaluate $ \int_0^1 \frac{1}{\sqrt{x}\sqrt{1\plus{}\sqrt{x}}\sqrt{1\plus{}\sqrt{1\plus{}\sqrt{x}}}}\ dx.$

2022 Turkey MO (2nd round), 1

In triangle $ABC$, $M$ is the midpoint of side $BC$, the bisector of angle $BAC$ intersects $BC$ and $(ABC)$ at $K$ and $L$, respectively. If the circle with diameter $[BC]$ is tangent to the external angle bisector of angle $BAC$, prove that this circle is tangent to $(KLM)$ as well.

1963 Leningrad Math Olympiad, grade 7

[b]7.1 . [/b] The area of the quadrilateral is $3$ cm$^2$ , and the lengths of its diagonals are $6$ cm and $2$ cm. Find the angle between the diagonals. [b]7.2[/b] Prove that the number $1 + 2^{3456789}$ is composite. [b]7.3[/b] $20$ people took part in the chess tournament. The participant who took clear (undivided) $19$th place scored $9.5$ points. How could they distribute points among other participants? [b]7.4[/b] The sum of the distances between the midpoints of opposite sides of a quadrilateral is equal to its semi-perimeter. Prove that this quadrilateral is a parallelogram. [b]7.5[/b] $40$ people travel on a bus without a conductor passengers carrying only coins in denominations of $10$, $15$ and $20$ kopecks. Total passengers have $ 49$ coins. Prove that passengers will not be able to pay the required amount of money to the ticket office and pay each other correctly. (Cost of a bus ticket in 1963 was 5 kopecks.) [b]7.6[/b] Some natural number $a$ is divided with a remainder by all natural numbers less than $a$. The sum of all the different (!) remainders turned out to be equal to $a$. Find $a$. [b]7.7[/b] Two squares were cut out of a chessboard. In what case is it possible and in what case not to cover the remaining squares of the board with dominoes (i.e., figures of the form $2\times 1$) without overlapping? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983460_1963_leningrad_math_olympiad]here[/url].

2010 Germany Team Selection Test, 2

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2012 China Girls Math Olympiad, 8

Find the number of integers $k$ in the set $\{0, 1, 2, \dots, 2012\}$ such that $\binom{2012}{k}$ is a multiple of $2012$.

2010 HMNT, 1

Jacob flips fi ve coins, exactly three of which land heads. What is the probability that the first two are both heads?

2009 Belarus Team Selection Test, 2

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2001 IberoAmerican, 2

The incircle of the triangle $\triangle{ABC}$ has center at $O$ and it is tangent to the sides $BC$, $AC$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. The lines $BO$ and $CO$ intersect the line $YZ$ at the points $P$ and $Q$, respectively. Show that if the segments $XP$ and $XQ$ has the same length, then the triangle $\triangle ABC$ is isosceles.

Maryland University HSMC part II, 2007

[b]p1.[/b] One hundred hobbits sit in a circle. The hobbits realize that whenever a hobbit and his two neighbors add up their total rubles, the sum is always $2007$. Prove that each hobbit has $669$ rubles. [b]p2.[/b] There was a young lady named Chris, Who, when asked her age, answered this: "Two thirds of its square Is a cube, I declare." Now what was the age of the miss? (a) Find the smallest possible age for Chris. You must justify your answer. (Note: ages are positive integers; "cube" means the cube of a positive integer.) (b) Find the second smallest possible age for Chris. You must justify your answer. (Ignore the word "young.") [b]p3.[/b] Show that $$\sum_{n=1}^{2007}\frac{1}{n^3+3n^2+2n}<\frac14$$ [b]p4.[/b] (a) Show that a triangle $ABC$ is isosceles if and only if there are two distinct points $P_1$ and $P_2$ on side $BC$ such that the sum of the distances from $P_1$ to the sides $AB$ and $AC$ equals the sum of the distances from $P_2$ to the sides $AB$ and $AC$. (b) A convex quadrilateral is such that the sum of the distances of any interior point to its four sides is constant. Prove that the quadrilateral is a parallelogram. (Note: "distance to a side" means the shortest distance to the line obtained by extending the side.) [b]p5.[/b] Each point in the plane is colored either red or green. Let $ABC$ be a fixed triangle. Prove that there is a triangle $DEF$ in the plane such that $DEF$ is similar to $ABC$ and the vertices of $DEF$ all have the same color. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Hanoi Open Mathematics Competitions, 10

Consider the set of all rectangles with a given area $S$. Find the largest value o $ M = \frac{16-p}{p^2+2p}$ where $p$ is the perimeter of the rectangle.

2015 Vietnam National Olympiad, 2

For $a,n\in\mathbb{Z}^+$, consider the following equation: \[ a^2x+6ay+36z=n\quad (1) \] where $x,y,z\in\mathbb{N}$. a) Find all $a$ such that for all $n\geq 250$, $(1)$ always has natural roots $(x,y,z)$. b) Given that $a>1$ and $\gcd (a,6)=1$. Find the greatest value of $n$ in terms of $a$ such that $(1)$ doesn't have natural root $(x,y,z)$.

2001 China Team Selection Test, 3

Given sets $A = \{1, 4, 5, 6, 7, 9, 11, 16, 17\}$, $B = \{2, 3, 8, 10, 12, 13, 14, 15, 18\}$, if a positive integer leaves a remainder (the smallest non-negative remainder) that belongs to $A$ when divided by 19, then that positive integer is called an $\alpha$ number. If a positive integer leaves a remainder that belongs to $B$ when divided by 19, then that positive integer is called a $\beta$ number. (1) For what positive integer $n$, among all its positive divisors, are the numbers of $\alpha$ divisors and $\beta$ divisors equal? (2) For which positive integers $k$, are the numbers of $\alpha$ divisors less than the numbers of $\beta$ divisors? For which positive integers $l$, are the numbers of $\alpha$ divisors greater than the numbers of $\beta$ divisors?

2017 Turkey Team Selection Test, 1

$m, n $ are positive integers and $p$ is a prime number. Find all triples $(m, n, p)$ satisfying $(m^3+n)(n^3+m)=p^3$

1942 Putnam, A3

Is the series $$\sum_{n=0}^{\infty} \frac{n!}{(n+1)^{n}}\cdot \left(\frac{19}{7}\right)^{n}$$ convergent or divergent?

2015 BMT Spring, 17

Tags: algebra
There exist real numbers $x$ and $y$ such that $x(a^3 + b^3 + c^3) + 3yabc \ge (x + y)(a^2b + b^2c + c^2a)$ holds for all positive real numbers $a, b$, and $c$. Determine the smallest possible value of $x/y$. .

2020 AMC 12/AHSME, 5

Tags: counting
Teams $A$ and $B$ are playing in a basketball league where each game results in a win for one team and a loss for the other team. Team $A$ has won $\tfrac{2}{3}$ of its games and team $B$ has won $\tfrac{5}{8}$ of its games. Also, team $B$ has won $7$ more games and lost $7$ more games than team $A.$ How many games has team $A$ played? $\textbf{(A) } 21 \qquad \textbf{(B) } 27 \qquad \textbf{(C) } 42 \qquad \textbf{(D) } 48 \qquad \textbf{(E) } 63$

2011 All-Russian Olympiad Regional Round, 10.6

2011 numbers are written on a board. For any three numbers, their sum is also among numbers written on the board. What is the smallest number of zeros among all 2011 numbers? (Author: I. Bogdanov)

2010 India IMO Training Camp, 2

Two polynomials $P(x)=x^4+ax^3+bx^2+cx+d$ and $Q(x)=x^2+px+q$ have real coefficients, and $I$ is an interval on the real line of length greater than $2$. Suppose $P(x)$ and $Q(x)$ take negative values on $I$, and they take non-negative values outside $I$. Prove that there exists a real number $x_0$ such that $P(x_0)<Q(x_0)$.

2016 ASDAN Math Tournament, 10

Tags:
Using the fact that $$\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6},$$ compute $$\int_0^1(\ln x)\ln(1-x)dx.$$

Estonia Open Senior - geometry, 2005.1.2

Two circles $c_1$ and $c_2$ with centres $O_1$ and $O_2$, respectively, are touching externally at $P$. On their common tangent at $P$, point $A$ is chosen, rays drawn from which touch the circles $c_1$ and $c_2$ at points $P_1$ and $P_2$ both different from $P$. It is known that $\angle P_1AP_2 = 120^o$ and angles $P_1AP$ and $P_2AP$ are both acute. Rays $AP_1$ and $AP_2$ intersect line $O_1O_2$ at points $G_1$ and $G_2$, respectively. The second intersection between ray $AO_1$ and $c_1$ is $H_1$, the second intersection between ray $AO_2$ and $c_2$ is $H_2$. Lines $G_1H_1$ and $AP$ intersect at $K$. Prove that if $G_1K$ is a tangent to circle $c_1$, then line $G_2A$ is tangent to circle $c_2$ with tangency point $H_2$.

2018 Saudi Arabia GMO TST, 4

In each of the cells of a $13 \times 13$ board is written an integer such that the integers in adjacent cells differ by $1$. If there are two $2$s and two $24$s on this board, how many $13$s can there be?

1999 Singapore Team Selection Test, 2

Is it possible to use $2 \times 1$ dominoes to cover a $2k \times 2k$ checkerboard which has $2$ squares, one of each colour, removed ?

2018 MOAA, 10

Vincent is playing a game with Evil Bill. The game uses an infinite number of red balls, an infinite number of green balls, and a very large bag. Vincent first picks two nonnegative integers $g$ and $k$ such that $g < k \le 2016$, and Evil Bill places $g$ green balls and $2016 - g$ red balls in the bag, so that there is a total of $2016$ balls in the bag. Vincent then picks a ball of either color and places it in the bag. Evil Bill then inspects the bag. If the ratio of green balls to total balls in the bag is ever exactly $\frac{k}{2016}$ , then Evil Bill wins. If the ratio of green balls to total balls is greater than $\frac{k}{2016}$ , then Vincent wins. Otherwise, Vincent and Evil Bill repeat the previous two actions (Vincent picks a ball and Evil Bill inspects the bag). If $S$ is the sum of all possible values of $k$ that Vincent could choose and be able to win, determine the largest prime factor of $S$.

1962 All Russian Mathematical Olympiad, 020

Given regular pentagon $ABCDE$. $M$ is an arbitrary point inside $ABCDE$ or on its side. Let the distances $|MA|, |MB|, ... , |ME|$ be renumerated and denoted with $$r_1\le r_2\le r_3\le r_4\le r_5.$$ Find all the positions of the $M$, giving $r_3$ the minimal possible value. Find all the positions of the $M$, giving $r_3$ the maximal possible value.

2024 Mexican Girls' Contest, 2

Tags:
There are 50 slips of paper numbered from 1 to 50. It is desired to pick 3 slips such that for any of the three numbers, divided by the greatest common divisor of the other two, the square root of the result is a rational number. How many unordered triples of slips satisfy this condition?