This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Greece National Olympiad, 1

Let $(x_n), n\in\mathbb{N}$ be a sequence such that $x_{n+1}=3x_n^3+x_n, \forall n\in\mathbb{N}$ and $x_1=\frac{a}{b}$ where $a,b$ are positive integers such that $3\not|b$. If $x_m$ is a square of a rational number for some positive integer $m$, prove that $x_1$ is also a square of a rational number.

2008 ITest, 20

Tags:
In order to earn a little spending money for the family vacation, Joshua and Wendy offer to clean up the storage shed. After clearing away some trash, Joshua and Wendy set aside give boxes that belong to the two of them that they decide to take up to their bedrooms. Each is in the shape of a cube. The four smaller boxes are all of equal size, and when stacked up, reach the exact height of the large box. If the volume of one of the smaller boxes is $216$ cubic inches, find the sum of the volumes of all five boxes (in cubic inches).

2023 Serbia Team Selection Test, P1

In a simple graph with 300 vertices no two vertices of the same degree are adjacent (boo hoo hoo). What is the maximal possible number of edges in such a graph?

1977 IMO Longlists, 59

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

2019 Durer Math Competition Finals, 3

On a piece of paper we have $2019$ statements numbered from $1$ to $2019$. The $n^{th}$ statement is the following: "On this piece of paper there are at most $n$ true statements". How many of the statements are true?

2002 Moldova National Olympiad, 2

Let $ a,b,c\geq 0$ such that $ a\plus{}b\plus{}c\equal{}1$. Prove that: $ a^2\plus{}b^2\plus{}c^2\geq 4(ab\plus{}bc\plus{}ca)\minus{}1$

Kvant 2023, M2731

There are 2023 natural written in a row. The first number is 12, and each number starting from the third is equal to the product of the previous two numbers, or to the previous number increased by 4. What is the largest number of perfect squares that can be among the 2023 numbers? [i]Based on the British Mathematical Olympiad[/i]

LMT Speed Rounds, 2011.1

Tags:
A positive integer is randomly selected from among the first $2011$ primes. What is the probability that it is even?

2004 Switzerland Team Selection Test, 4

Tags: inequalities
[i]Second Test, May 16[/i] Let $a$, $b$, and $c$ be positive real numbers such that $abc = 1$. Prove that $\frac{ab}{a^{5}+b^{5}+ab}+\frac{bc}{b^{5}+c^{5}+bc}+\frac{ca}{c^{5}+a^{5}+ca}\le 1$ . When does equality hold?

2021 DIME, 8

Tags:
In the diagram below, a group of equilateral triangles are joined together by their sides. A parallelogram in the diagram is defined as a parallelogram whose vertices are all at the intersection of two grid lines and whose sides all travel along the grid lines. Find the number of distinct parallelograms in the diagram below. [asy] size(3cm); pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R; A=(1, 1.73); B=(2, 3.46); C=(3, 5.19); D=(4, 6.92); E=(5, 8.65); F=(6, 10.38); L=(13, 1.73); K=(12, 3.46); J=(11, 5.19); I=(10, 6.92); H=(9, 8.65); G=(8, 10.38); M=(2,0); N=(4,0); O=(6,0); P=(8,0); Q=(10,0); R=(12,0); draw(A--M); draw(B--N); draw(C--O); draw(D--P); draw(E--Q); draw(F--R); draw(A--L); draw(B--K); draw(C--J); draw(D--I); draw(E--H); draw(F--G); draw(M--G); draw(N--H); draw(O--I); draw(P--J); draw(Q--K); draw(R--L); draw(A--F); draw(G--L); draw(M--R); [/asy] [i]Proposed by Awesome_guy[/i]

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

May Olympiad L1 - geometry, 2009.4

Three circumferences are tangent to each other, as shown in the figure. The region of the outer circle that is not covered by the two inner circles has an area equal to $2 \pi$. Determine the length of the $PQ$ segment . [img]https://cdn.artofproblemsolving.com/attachments/a/e/65c08c47d4d20a05222a9b6cf65e84a25283b7.png[/img]

2013 F = Ma, 4

The sign shown below consists of two uniform legs attached by a frictionless hinge. The coefficient of friction between the ground and the legs is $\mu$. Which of the following gives the maximum value of $\theta$ such that the sign will not collapse? $\textbf{(A) } \sin \theta = 2 \mu \\ \textbf{(B) } \sin \theta /2 = \mu / 2\\ \textbf{(C) } \tan \theta / 2 = \mu\\ \textbf{(D) } \tan \theta = 2 \mu \\ \textbf{(E) } \tan \theta / 2 = 2 \mu$

2005 Turkey MO (2nd round), 5

If $a,b,c$ are the sides of a triangle and $r$ the inradius of the triangle, prove that \[\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le \frac{1}{4r^2} \]

2002 Romania National Olympiad, 3

Let $k$ and $n$ be positive integers with $n>2$. Show that the equation: \[x^n-y^n=2^k\] has no positive integer solutions.

1995 Romania Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral. Suppose that similar isosceles triangles $APB, BQC, CRD, DSA$ with the bases on the sides of $ABCD$ are constructed in the exterior of the quadrilateral such that $PQRS$ is a rectangle but not a square. Show that $ABCD$ is a rhombus.

2013 Romania National Olympiad, 4

Let $n$ be a positive integer and $M = {1, 2, . . . , 2n + 1}$. Find out in how many ways we can split the set $M$ into three mutually disjoint nonempty sets $A,B,C$ so that both the following are true: (i) for each $a \in A$ and $b \in B$, the remainder of the division of $a$ by $b$ belongs to $C$ (ii) for each $c \in C$ there exists $a \in A$ and $b \in B$ such that $c$ is the remainder of the division of $a$ by $b$.

2023 Chile Junior Math Olympiad, 6

What is the smallest positive integer that is divisible by $225$ and that has ony the numbers one and zero as digits?

1996 All-Russian Olympiad, 7

Two piles of coins lie on a table. It is known that the sum of the weights of the coins in the two piles are equal, and for any natural number $k$, not exceeding the number of coins in either pile, the sum of the weights of the $k$ heaviest coins in the first pile is not more than that of the second pile. Show that for any natural number $x$, if each coin (in either pile) of weight not less than $x$ is replaced by a coin of weight $x$, the first pile will not be lighter than the second. [i]D. Fon-der-Flaas[/i]

2013 Stanford Mathematics Tournament, 3

Tags:
Find the minimum of $f(x,y,z)=x^3+12\frac{yz}{x}+16(\frac{1}{yz})^{\frac{3}{2}}$ where $x,y$, and $z$ are all positive. Note: The problem as given in the tiebreaker did not specify that each of $x,y$, and $z$ had to be positive. Without this constraint, the answer is $-\infty$, as $x^3$ can be an arbitrarily large negative value and dominate the expression.

2014 Silk Road, 3

Tags: inequalities
$ a,b,c\ge 0,\ \ \ a^3+b^3+c^3+abc=4 $ Prove that $a^3b+b^3c+c^3b \le 3$

2013 JBMO Shortlist, 1

Tags: geometry
Let ${AB}$ be a diameter of a circle ${\omega}$ and center ${O}$ , ${OC}$ a radius of ${\omega}$ perpendicular to $AB$,${M}$ be a point of the segment $\left( OC \right)$ . Let ${N}$ be the second intersection point of line ${AM}$ with ${\omega}$ and ${P}$ the intersection point of the tangents of ${\omega}$ at points ${N}$ and ${B.}$ Prove that points ${M,O,P,N}$ are cocyclic. (Albania)

2001 Tuymaada Olympiad, 7

Several rational numbers were written on the blackboard. Dima wrote off their fractional parts on paper. Then all the numbers on the board squared, and Dima wrote off another paper with fractional parts of the resulting numbers. It turned out that on Dima's papers were written the same sets of numbers (maybe in different order). Prove that the original numbers on the board were integers. (The fractional part of a number $x$ is such a number $\{x\}, 0 \le \{x\} <1$, that $x-\{x\}$ is an integer.)

2013 Switzerland - Final Round, 9

Find all quadruples $(p, q, m, n)$ of natural numbers such that $p$ and $q$ are prime and the the following equation is fulfilled: $$p^m - q^3 = n^3$$

1999 Slovenia National Olympiad, Problem 1

What is the smallest possible value of $\left|12^m-5^n\right|$, where $m$ and $n$ are positive integers?