This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2015 AMC 12/AHSME, 7

Tags: symmetry
A regular $15$-gon has $L$ lines of symmetry, and the smallest positive angle for which it has rotational symmetry is $R$ degrees. What is $L+R$? $\textbf{(A) }24\qquad\textbf{(B) }27\qquad\textbf{(C) }32\qquad\textbf{(D) }39\qquad\textbf{(E) }54$

1995 Tournament Of Towns, (475) 3

The first digit of a $6$-digit number is $5$. Is it true that it is always possible to write $6$ more digits to the right of this number so that the resulting $12$-digit number is a perfect square? (A Tolpygo)

2006 National Olympiad First Round, 5

Tags: geometry , symmetry
Let $D$ be a point on the side $[BC]$ of $\triangle ABC$ such that $|AB|+|BD|=|AC|$ and $m(\widehat{BAD})=m(\widehat{DAC})=30^\circ$. What is $m(\widehat{ACB})$? $ \textbf{(A)}\ 30^\circ \qquad\textbf{(B)}\ 40^\circ \qquad\textbf{(C)}\ 45^\circ \qquad\textbf{(D)}\ 48^\circ \qquad\textbf{(E)}\ 50^\circ $

2004 Harvard-MIT Mathematics Tournament, 1

Let $f(x)=\sin(\sin(x))$. Evaluate \[ \lim_{h \to 0} \dfrac {f(x+h)-f(h)}{x} \] at $x=\pi$.

2014 Balkan MO Shortlist, N6

Let $ f: \mathbb{N} \rightarrow \mathbb{N} $ be a function from the positive integers to the positive integers for which $ f(1)=1,f(2n)=f(n) $ and $ f(2n+1)=f(n)+f(n+1) $ for all $ n\in \mathbb{N} $. Prove that for any natural number $ n $, the number of odd natural numbers $ m $ such that $ f(m)=n $ is equal to the number of positive integers not greater than $ n $ having no common prime factors with $ n $.

2019 India IMO Training Camp, P3

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

2020 ELMO Problems, P3

Janabel has a device that, when given two distinct points $U$ and $V$ in the plane, draws the perpendicular bisector of $UV$. Show that if three lines forming a triangle are drawn, Janabel can mark the orthocenter of the triangle using this device, a pencil, and no other tools. [i]Proposed by Fedir Yudin.[/i]

1991 AMC 12/AHSME, 17

Tags:
A positive integer $N$ is a [i]palindrome[/i] if the integer obtained by reversing the sequence of digits of $N$ is equal to $N$. The year 1991 is the only year in the current century with the following two properties: (a) It is a palindrome (b) It factors as a product of a 2-digit prime palindrome and a 3-digit prime palindrome. How many years in the millennium between 1000 and 2000 (including the year 1991) have properties (a) and (b)? $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 $

1960 AMC 12/AHSME, 9

The fraction $\frac{a^2+b^2-c^2+2ab}{a^2+c^2-b^2+2ac}$ is (with suitable restrictions of the values of $a$, $b$, and $c$): $ \textbf{(A) }\text{irreducible}\qquad\textbf{(B) }\text{reducible to negative 1}\qquad$ $\textbf{(C) }\text{reducible to a polynomial of three terms} \qquad\textbf{(D) }\text{reducible to} \frac{a-b+c}{a+b-c} \qquad\textbf{(E) }\text{reducible to} \frac{a+b-c}{a-b+c} $

2012 Grigore Moisil Intercounty, 1

For $ x\in\mathbb{R} , $ determine the minimum of $ \sqrt{(x-1)^2+\left( x^2-5\right)^2} +\sqrt{(x+2)^2+\left( x^2+1 \right)^2} $ and the maximum of $ \sqrt{(x-1)^2+\left( x^2-5\right)^2} -\sqrt{(x+2)^2+\left( x^2+1 \right)^2} . $ [i]Vasile Pop[/i]

2001 Tournament Of Towns, 4

On an east-west shipping lane are ten ships sailing individually. The first five from the west are sailing eastwards while the other five ships are sailing westwards. They sail at the same constant speed at all times. Whenever two ships meet, each turns around and sails in the opposite direction. When all ships have returned to port, how many meetings of two ships have taken place?

LMT Team Rounds 2021+, A4 B11

Tags:
Five members of the Lexington Math Team are sitting around a table. Each flips a fair coin. Given that the probability that three consecutive members flip heads is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. [i]Proposed by Alex Li[/i]

2003 JHMMC 8, 29

Tags:
How many three-digit numbers are perfect squares?

Russian TST 2017, P3

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.

2002 Iran MO (3rd Round), 14

A subset $S$ of $\mathbb N$ is [i]eventually linear[/i] iff there are $k,N\in\mathbb N$ that for $n>N,n\in S\Longleftrightarrow k|n$. Let $S$ be a subset of $\mathbb N$ that is closed under addition. Prove that $S$ is eventually linear.

1986 IMO Longlists, 17

We call a tetrahedron right-faced if each of its faces is a right-angled triangle. [i](a)[/i] Prove that every orthogonal parallelepiped can be partitioned into six right-faced tetrahedra. [i](b)[/i] Prove that a tetrahedron with vertices $A_1,A_2,A_3,A_4$ is right-faced if and only if there exist four distinct real numbers $c_1, c_2, c_3$, and $c_4$ such that the edges $A_jA_k$ have lengths $A_jA_k=\sqrt{|c_j-c_k|}$ for $1\leq j < k \leq 4.$

2003 Iran MO (3rd Round), 1

suppose this equation: x <sup>2</sup> +y <sup>2</sup> +z <sup>2</sup> =w <sup>2</sup> . show that the solution of this equation ( if w,z have same parity) are in this form: x=2d(XZ-YW), y=2d(XW+YZ),z=d(X <sup>2</sup> +Y <sup>2</sup> -Z <sup>2</sup> -W <sup>2</sup> ),w=d(X <sup>2</sup> +Y <sup>2</sup> +Z <sup>2</sup> +W <sup>2</sup> )

2019 Iran Team Selection Test, 1

Find all polynomials $P(x,y)$ with real coefficients such that for all real numbers $x,y$ and $z$: $$P(x,2yz)+P(y,2zx)+P(z,2xy)=P(x+y+z,xy+yz+zx).$$ [i]Proposed by Sina Saleh[/i]

1996 Romania Team Selection Test, 13

Tags: inequalities
Let $ x_1,x_2,\ldots,x_n $ be positive real numbers and $ x_{n+1} = x_1 + x_2 + \cdots + x_n $. Prove that \[ \sum_{k=1}^n \sqrt { x_k (x_{n+1} - x_k)} \leq \sqrt { \sum_{k=1}^n x_{n+1}(x_{n+1}-x_k)}. \] [i]Mircea Becheanu[/i]

1993 Taiwan National Olympiad, 4

In the Cartesian plane, let $C$ be a unit circle with center at origin $O$. For any point $Q$ in the plane distinct from $O$, define $Q'$ to be the intersection of the ray $OQ$ and the circle $C$. Prove that for any $P\in C$ and any $k\in\mathbb{N}$ there exists a lattice point $Q(x,y)$ with $|x|=k$ or $|y|=k$ such that $PQ'<\frac{1}{2k}$.

2023 South Africa National Olympiad, 5

South Adrican Magical Flights (SAMF) operates flights between South Adrican airports. If there is a flight from airport $A$ to airpost $B$, there will be also a flight from $B$ to $A$. The SAMF headquarters are located in Kimberley. Every airport that is served by Kimberley can be reached from Kimberley in precisely one way. This way of reaching Kimberley may involve stopping at other airports on the way. (For example, it may happen that you can get to Kimberley by flying from Durban to Bloemfontein and then from to Bloemfontein to Kimberley. In that case there is no other way to get from Durban to Kimberley. For example, there would be no direct Hight from Durban to Kimberley.) An airport (other than Kimberley) is called terminal if there are flights to (and from) precisely one other airport. Suppose that there are $t$ terminal airports. Due to budget cuts, SAMF decides to close down $k$ of the airports. It should still be possible to reach each of the remaining airports from Kimberley. Let $C$ be the number of choices for the $k$ destinations that are discontinued. Prove that $$\frac{t!}{k!(t-k)} \le C \le \frac{(t+k-1)!}{k!(t-1)!} .$$

2022 JHMT HS, 9

Tags: algebra
Let $\{ a_n \}_{n=0}^{11}$ and $\{ b_n \}_{n=0}^{11}$ be sequences of real numbers. Suppose $a_0 = b_0 = -1$, $a_1 = b_1$, and for all integers $n \in \{2, 3, \ldots, 11\}$, \begin{align*} a_n & = a_{n-1} - (11 - n)^2(1 - (11 - (n - 1))^2)a_{n-2} \quad \text{and} \\ b_n & = b_{n-1} - (12 - n)^2(1 - (12 - (n - 1))^2)b_{n-2}. \end{align*} If $b_{11} = 2a_{11}$, then determine the value of $a_1$.

1950 Moscow Mathematical Olympiad, 173

On a chess board, the boundaries of the squares are assumed to be black. Draw a circle of the greatest possible radius lying entirely on the black squares.

2017 Balkan MO Shortlist, G8

Given an acute triangle $ABC$ ($AC\ne AB$) and let $(C)$ be its circumcircle. The excircle $(C_1)$ corresponding to the vertex $A$, of center $I_a$, tangents to the side $BC$ at the point $D$ and to the extensions of the sides $AB,AC$ at the points $E,Z$ respectively. Let $I$ and $L$ are the intersection points of the circles $(C)$ and $(C_1)$, $H$ the orthocenter of the triangle $EDZ$ and $N$ the midpoint of segment $EZ$. The parallel line through the point $l_a$ to the line $HL$ meets the line $HI$ at the point $G$. Prove that the perpendicular line $(e)$ through the point $N$ to the line $BC$ and the parallel line $(\delta)$ through the point $G$ to the line $IL$ meet each other on the line $HI_a$.

2002 AIME Problems, 4

Consider the sequence defined by $a_k=\frac 1{k^2+k}$ for $k\ge 1.$ Given that $a_m+a_{m+1}+\cdots+a_{n-1}=1/29,$ for positive integers $m$ and $n$ with $m<n$, find $m+n.$