Found problems: 85335
1975 AMC 12/AHSME, 18
A positive integer $ N$ with three digits in its base ten representation is chosen at random, with each three digit number having an equal chance of being chosen. The probability that $ \log_2 N$ is an integer is
$ \textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 3/899 \qquad
\textbf{(C)}\ 1/225 \qquad
\textbf{(D)}\ 1/300 \qquad
\textbf{(E)}\ 1/450$
1984 All Soviet Union Mathematical Olympiad, 383
The teacher wrote on a blackboard: $$x^2 + 10x + 20$$ Then all the pupils in the class came up in turn and either decreased or increased by $1$ either the free coefficient or the coefficient at $x$, but not both. Finally they have obtained: $$x^2 + 20x + 10$$ Is it true that some time during the process there was written the square polynomial with the integer roots?
2006 China Northern MO, 2
$p$ is a prime number that is greater than $2$. Let $\{ a_{n}\}$ be a sequence such that $ na_{n+1}= (n+1) a_{n}-\left( \frac{p}{2}\right)^{4}$.
Show that if $a_{1}=5$, the $16 \mid a_{81}$.
2000 AMC 12/AHSME, 19
In triangle $ ABC$, $ AB \equal{} 13$, $ BC \equal{} 14$, and $ AC \equal{} 15$. Let $ D$ denote the midpoint of $ \overline{BC}$ and let $ E$ denote the intersection of $ \overline{BC}$ with the bisector of angle $ BAC$. Which of the following is closest to the area of the triangle $ ADE$?
$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 2.5 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 3.5 \qquad \textbf{(E)}\ 4$
1974 Vietnam National Olympiad, 1
Find all positive integers $n$ and $b$ with $0 < b < 10$ such that if $a_n$ is the positive integer with $n$ digits, all of them $1$, then $a_{2n} - b a_n$ is a square.
1983 AMC 12/AHSME, 7
Alice sells an item at $\$10$ less than the list price and receives $10\%$ of her selling price as her commission. Bob sells the same item at $\$20$ less than the list price and receives $20\%$ of his selling price as his commission. If they both get the same commission, then the list price is
$ \textbf{(A)}\ \$20\qquad\textbf{(B)}\ \$30\qquad\textbf{(C)}\ \$50\qquad\textbf{(D)}\ \$70\qquad\textbf{(E)}\ \$100 $
2021 ELMO Problems, 6
In $\triangle ABC$, points $D$, $E$, and $F$ lie on sides $BC$, $CA$, and $AB$, respectively, such that each of the quadrilaterals $AFDE$, $BDEF$, and $CEFD$ has an incircle. Prove that the inradius of $\triangle ABC$ is twice the inradius of $\triangle DEF$.
2010 Today's Calculation Of Integral, 603
Find the minimum value of $\int_0^1 \{\sqrt{x}-(a+bx)\}^2dx$.
Please solve the problem without using partial differentiation for those who don't learn it.
1961 Waseda University entrance exam/Science and Technology
I Soros Olympiad 1994-95 (Rus + Ukr), 11.2
Given a rectangle $ABCD$ with $AB> BC$. On the side $CD$, take a point $L$ such that $BL$ and $AC$ are perpendicular. Let $K$ be the intersection point of segments $BL$ and $AC$. It is known that segments $AL$. and $DK$ are perpendicular. Find $\angle ACB.$
2024 Greece National Olympiad, 2
Let $ABC$ be a triangle with $AB<AC<BC$ with circumcircle $\Gamma_1$. The circle $\Gamma_2$ has center $D$ lying on $\Gamma_1$ and touches $BC$ at $E$ and the extension of $AB$ at $F$. Let $\Gamma_1$ and $\Gamma_2$ meet at $K, G$ and the line $KG$ meets $EF$ and $CD$ at $M, N$. Show that $BCNM$ is cyclic.
2013 Costa Rica - Final Round, G3
Let $ABCD$ be a rectangle with center $O$ such that $\angle DAC = 60^o$. Bisector of $\angle DAC$ cuts a $DC$ at $S$, $OS$ and $AD$ intersect at $L$, $BL$ and $AC$ intersect at $M$. Prove that $SM \parallel CL$.
2008 Polish MO Finals, 3
In a convex pentagon $ ABCDE$ in which $ BC\equal{}DE$ following equalities hold:
\[ \angle ABE \equal{}\angle CAB \equal{}\angle AED\minus{}90^{\circ},\qquad \angle ACB\equal{}\angle ADE\]
Show that $ BCDE$ is a parallelogram.
2020 JBMO Shortlist, 1
Alice and Bob play the following game: starting with the number $2$ written on a blackboard, each player in turn changes the current number $n$ to a number $n + p$, where $p$ is a prime divisor of $n$. Alice goes first and the players alternate in turn. The game is lost by the one who is forced to write a number greater than $\underbrace{22...2}_{2020}$. Assuming perfect play, who will win the game.
1994 AIME Problems, 12
A fenced, rectangular field measures 24 meters by 52 meters. An agricultural researcher has 1994 meters of fence that can be used for internal fencing to partition the field into congruent, square test plots. The entire field must be partitioned, and the sides of the squares must be parallel to the edges of the field. What is the largest number of square test plots into which the field can be partitioned using all or some of the 1994 meters of fence?
1991 National High School Mathematics League, 14
$O$ is the vertex of a parabola, $F$ is its focus. $PQ$ is a chord of the parabola. If $|OF|=a,|PQ|=b$, find the area of $\triangle OPQ$.
1973 IMO Shortlist, 3
Prove that the sum of an odd number of vectors of length 1, of common origin $O$ and all situated in the same semi-plane determined by a straight line which goes through $O,$ is at least 1.
2010 Canada National Olympiad, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
1992 Tournament Of Towns, (350) 2
The following spiral sequence of squares is drawn on an infinite blackboard: The $1$st square $(1 \times 1)$ has a common vertical side with the $2$nd square (also $1\times 1$) drawn on the right side of it; the 3rd square $(2 \times 2)$ is drawn on the upper side of the $1$st and 2nd ones; the $4$th square $(3 \times 3)$ is drawn on the left side of the $1$st and $3$rd ones; the $5$th square $(5 \times 5)$ is drawn on the bottom side of the $4$th, 1st and $2$nd ones; the $6$th square $(8 \times 8)$ is drawn on the right side, and so on. Each of the squares has a common side with the rectangle consisting of squares constructed earlier. Prove that the centres of all the squares except the $1$st lie on two straight lines.
(A Andjans, Riga)
2017 Costa Rica - Final Round, F1
Let $f: Z ^+ \to R$, such that $f (1) = 2018$ and $f (1) + f (2) + ...+ f (n) = n^2f (n)$, for all $n> 1$. Find the value $f (2017)$.
2021 CCA Math Bonanza, L3.4
Compute the sum of $x^2+y^2$ over all four ordered pairs $(x,y)$ of real numbers satisfying $x=y^2-20$ and $y=x^2+x-21$.
[i]2021 CCA Math Bonanza Lightning Round #3.4[/i]
2014 Postal Coaching, 5
Let $(x_j,y_j)$, $1\le j\le 2n$, be $2n$ points on the half-circle in the upper half-plane. Suppose $\sum_{j=1}^{2n}x_j$ is an odd integer. Prove that $\displaystyle{\sum_{j=1}^{2n}y_j \ge 1}$.
Mathley 2014-15, 2
Let $n$ be a positive integer and $p$ a prime number $p > n + 1$.
Prove that the following equation does not have integer solution $$1 + \frac{x}{n + 1} + \frac{x^2}{2n + 1} + ...+ \frac{x^p}{pn + 1} = 0$$
Luu Ba Thang, Department of Mathematics, College of Education
2002 AMC 12/AHSME, 22
Triangle $ ABC$ is a right triangle with $ \angle ACB$ as its right angle, $ m\angle ABC \equal{} 60^\circ$, and $ AB \equal{} 10$. Let $ P$ be randomly chosen inside $ \triangle ABC$, and extend $ \overline{BP}$ to meet $ \overline{AC}$ at $ D$. What is the probability that $ BD > 5\sqrt2$?
[asy]import math;
unitsize(4mm);
defaultpen(fontsize(8pt)+linewidth(0.7));
dotfactor=4;
pair A=(10,0);
pair C=(0,0);
pair B=(0,10.0/sqrt(3));
pair P=(2,2);
pair D=extension(A,C,B,P);
draw(A--C--B--cycle);
draw(B--D);
dot(P);
label("A",A,S);
label("D",D,S);
label("C",C,S);
label("P",P,NE);
label("B",B,N);[/asy]
$ \textbf{(A)}\ \frac {2 \minus{} \sqrt2}{2} \qquad \textbf{(B)}\ \frac {1}{3} \qquad \textbf{(C)}\ \frac {3 \minus{} \sqrt3}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {5 \minus{} \sqrt5}{5}$
2015 Purple Comet Problems, 12
The product $20! \cdot 21! \cdot 22! \cdot \cdot \cdot 28!$ can be expressed in the form $m$ $\cdot$ $n^3$, where m and n are positive integers, and m is not divisible by the cube of any prime. Find m.
1952 AMC 12/AHSME, 3
The expression $ a^3 \minus{} a^{ \minus{} 3}$ equals:
$ \textbf{(A)}\ \left(a \minus{} \frac {1}{a}\right)\left(a^2 \plus{} 1 \plus{} \frac {1}{a^2}\right) \qquad\textbf{(B)}\ \left(\frac {1}{a} \minus{} a\right)\left(a^2 \minus{} 1 \plus{} \frac {1}{a^2}\right)$
$ \textbf{(C)}\ \left(a \minus{} \frac {1}{a}\right)\left(a^2 \minus{} 2 \plus{} \frac {1}{a^2}\right) \qquad\textbf{(D)}\ \left(\frac {1}{a} \minus{} a\right)\left(a^2 \plus{} 1 \plus{} \frac {1}{a^2}\right)$
$ \textbf{(E)}\ \text{none of these}$