This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 India Regional Mathematical Olympiad, 6

Positive integers $a, b, c$ satisfy $\frac1a +\frac1b +\frac1c<1$. Prove that $\frac1a +\frac1b +\frac1c\le \frac{41}{42}$. Also prove that equality in fact holds in the second inequality.

2019 Harvard-MIT Mathematics Tournament, 8

Can the set of lattice points $\{(x, y) \mid x, y \in \mathbb{Z}, 1 \le x, y \le 252, x \neq y\}$ be colored using 10 distinct colors such that for all $a \neq b$, $b \neq c$, the colors of $(a, b)$ and $(b, c)$ are distinct?

1953 Putnam, B6

Tags: locus , circles , minimal
Let $P$ and $Q$ be any points inside a circle $C$ with center $O$ such that $OP=OQ.$ Determine the location of a point $Z$ on $C$ such that $PZ+QZ$ is minimal.

1969 IMO Longlists, 41

$(MON 2)$ Given reals $x_0, x_1, \alpha, \beta$, find an expression for the solution of the system \[x_{n+2} -\alpha x_{n+1} -\beta x_n = 0, \qquad n= 0, 1, 2, \ldots\]

2008 Oral Moscow Geometry Olympiad, 4

Angle $A$ in triangle $ABC$ is equal to $120^o$. Prove that the distance from the center of the circumscribed circle to the orthocenter is equal to $AB + AC$. (V. Protasov)

2016 Indonesia TST, 2

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

2015 Turkey Team Selection Test, 6

Prove that there are infinitely many positive integers $n$ such that $(n!)^{n+2015}$ divides $(n^{2})!$.

2004 All-Russian Olympiad, 3

The polynomials $ P(x)$ and $ Q(x)$ are given. It is known that for a certain polynomial $ R(x, y)$ the identity $ P(x) \minus{} P(y) \equal{} R(x, y) (Q(x) \minus{} Q(y))$ applies. Prove that there is a polynomial $ S(x)$ so that $ P(x) \equal{} S(Q(x)) \quad \forall x.$

2016 HMIC, 5

Let $S = \{a_1, \ldots, a_n \}$ be a finite set of positive integers of size $n \ge 1$, and let $T$ be the set of all positive integers that can be expressed as sums of perfect powers (including $1$) of distinct numbers in $S$, meaning \[ T = \left\{ \sum_{i=1}^n a_i^{e_i} \mid e_1, e_2, \dots, e_n \ge 0 \right\}. \] Show that there is a positive integer $N$ (only depending on $n$) such that $T$ contains no arithmetic progression of length $N$. [i]Yang Liu[/i]

2009 Dutch IMO TST, 5

Suppose that we are given an $n$-gon of which all sides have the same length, and of which all the vertices have rational coordinates. Prove that $n$ is even.

2022 Purple Comet Problems, 20

Let $\mathcal{S}$ be a sphere with radius $2.$ There are $8$ congruent spheres whose centers are at the vertices of a cube, each has radius $x,$ each is externally tangent to $3$ of the other $7$ spheres with radius $x,$ and each is internally tangent to $\mathcal{S}.$ There is a sphere with radius $y$ that is the smallest sphere internally tangent to $\mathcal{S}$ and externally tangent to $4$ spheres with radius $x.$ There is a sphere with radius $z$ centered at the center of $\mathcal{S}$ that is externally tangent to all $8$ of the spheres with radius $x.$ Find $18x + 5y + 4z.$

2020 Thailand TSTST, 4

Does there exist a set $S$ of positive integers satisfying the following conditions? $\text{(i)}$ $S$ contains $2020$ distinct elements; $\text{(ii)}$ the number of distinct primes in the set $\{\gcd(a, b) : a, b \in S, a \neq b\}$ is exactly $2019$; and $\text{(iii)}$ for any subset $A$ of $S$ containing at least two elements, $\sum\limits_{a,b\in A; a<b} ab$ is not a prime power.

1954 AMC 12/AHSME, 27

A right circular cone has for its base a circle having the same radius as a given sphere. The volume of the cone is one-half that of the sphere. The ratio of the altitude of the cone to the radius of its base is: $ \textbf{(A)}\ \frac{1}{1} \qquad \textbf{(B)}\ \frac{1}{2} \qquad \textbf{(C)}\ \frac{2}{3} \qquad \textbf{(D)}\ \frac{2}{1} \qquad \textbf{(E)}\ \sqrt{\frac{5}{4}}$

1977 Yugoslav Team Selection Test, Problem 2

Determine all $6$-tuples $(p,q,r,x,y,z)$ where $p,q,r$ are prime, and $x,y,z$ natural numbers such that $p^{2x}=q^yr^z+1$.

MMPC Part II 1958 - 95, 1969

[b]p1.[/b] Two trains, $A$ and $B$, travel between cities $P$ and $Q$. On one occasion $A$ started from $P$ and $B$ from $Q$ at the same time and when they met $A$ had travelled $120$ miles more than $B$. It took $A$ four $(4)$ hours to complete the trip to $Q$ and B nine $(9)$ hours to reach $P$. Assuming each train travels at a constant speed, what is the distance from $P$ to $Q$? [b]p2.[/b] If $a$ and $b$ are integers, $b$ odd, prove that $x^2 + 2ax + 2b = 0$ has no rational roots. [b]p3.[/b] A diameter segment of a set of points in a plane is a segment joining two points of the set which is at least as long as any other segment joining two points of the set. Prove that any two diameter segments of a set of points in the plane must have a point in common. [b]p4.[/b] Find all positive integers $n$ for which $\frac{n(n^2 + n + 1) (n^2 + 2n + 2)}{2n + 1}$ is an integer. Prove that the set you exhibit is complete. [b]p5.[/b] $A, B, C, D$ are four points on a semicircle with diameter $AB = 1$. If the distances $\overline{AC}$, $\overline{BC}$, $\overline{AD}$, $\overline{BD}$ are all rational numbers, prove that $\overline{CD}$ is also rational. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1981 All Soviet Union Mathematical Olympiad, 305

Given points $A,B,M,N$ on the circumference. Two chords $[MA_1]$ and $[MA_2]$ are orthogonal to lines $(NA)$ and $(NB)$ respectively. Prove that $(AA_1)$ and $(BB_1)$ lines are parallel.

2008 Germany Team Selection Test, 1

Tags: ratio , geometry
Let $ ABC$ be an acute triangle, and $ M_a$, $ M_b$, $ M_c$ be the midpoints of the sides $ a$, $ b$, $ c$. The perpendicular bisectors of $ a$, $ b$, $ c$ (passing through $ M_a$, $ M_b$, $ M_c$) intersect the boundary of the triangle again in points $ T_a$, $ T_b$, $ T_c$. Show that if the set of points $ \left\{A,B,C\right\}$ can be mapped to the set $ \left\{T_a, T_b, T_c\right\}$ via a similitude transformation, then two feet of the altitudes of triangle $ ABC$ divide the respective triangle sides in the same ratio. (Here, "ratio" means the length of the shorter (or equal) part divided by the length of the longer (or equal) part.) Does the converse statement hold?

MOAA Gunga Bowls, 2019

[u]Set 1[/u] [b]p1.[/b] Farmer John has $4000$ gallons of milk in a bucket. On the first day, he withdraws $10\%$ of the milk in the bucket for his cows. On each following day, he withdraws a percentage of the remaining milk that is $10\%$ more than the percentage he withdrew on the previous day. For example, he withdraws $20\%$ of the remaining milk on the second day. How much milk, in gallons, is left after the tenth day? [b]p2.[/b] Will multiplies the first four positive composite numbers to get an answer of $w$. Jeremy multiplies the first four positive prime numbers to get an answer of $j$. What is the positive difference between $w$ and $j$? [b]p3.[/b] In Nathan’s math class of $60$ students, $75\%$ of the students like dogs and $60\%$ of the students like cats. What is the positive difference between the maximum possible and minimum possible number of students who like both dogs and cats? [u]Set 2[/u] [b]p4.[/b] For how many integers $x$ is $x^4 - 1$ prime? [b]p5.[/b] Right triangle $\vartriangle ABC$ satisfies $\angle BAC = 90^o$. Let $D$ be the foot of the altitude from $A$ to $BC$. If $AD = 60$ and $AB = 65$, find the area of $\vartriangle ABC$. [b]p6.[/b] Define $n! = n \times (n - 1) \times ... \times 1$. Given that $3! + 4! + 5! = a^2 + b^2 + c^2$ for distinct positive integers $a, b, c$, find $a + b + c$. [u]Set 3[/u] [b]p7.[/b] Max nails a unit square to the plane. Let M be the number of ways to place a regular hexagon (of any size) in the same plane such that the square and hexagon share at least $2$ vertices. Vincent, on the other hand, nails a regular unit hexagon to the plane. Let $V$ be the number of ways to place a square (of any size) in the same plane such that the square and hexagon share at least $2$ vertices. Find the nonnegative difference between $M$ and $V$ . [b]p8.[/b] Let a be the answer to this question, and suppose $a > 0$. Find $\sqrt{a +\sqrt{a +\sqrt{a +...}}}$ . [b]p9.[/b] How many ordered pairs of integers $(x, y)$ are there such that $x^2 - y^2 = 2019$? [u]Set 4[/u] [b]p10.[/b] Compute $\frac{p^3 + q^3 + r^3 - 3pqr}{p + q + r}$ where $p = 17$, $q = 7$, and $r = 8$. [b]p11.[/b] The unit squares of a $3 \times 3$ grid are colored black and white. Call a coloring good if in each of the four $2 \times 2$ squares in the $3 \times 3$ grid, there is either exactly one black square or exactly one white square. How many good colorings are there? Consider rotations and reflections of the same pattern distinct colorings. [b]p12.[/b] Define a $k$-[i]respecting [/i]string as a sequence of $k$ consecutive positive integers $a_1$, $a_2$, $...$ , $a_k$ such that $a_i$ is divisible by $i$ for each $1 \le i \le k$. For example, $7$, $8$, $9$ is a $3$-respecting string because $7$ is divisible by $1$, $8$ is divisible by $2$, and $9$ is divisible by $3$. Let $S_7$ be the set of the first terms of all $7$-respecting strings. Find the sum of the three smallest elements in $S_7$. [u]Set 5[/u] [b]p13.[/b] A triangle and a quadrilateral are situated in the plane such that they have a finite number of intersection points $I$. Find the sum of all possible values of $I$. [b]p14.[/b] Mr. DoBa continuously chooses a positive integer at random such that he picks the positive integer $N$ with probability $2^{-N}$ , and he wins when he picks a multiple of 10. What is the expected number of times Mr. DoBa will pick a number in this game until he wins? [b]p15.[/b] If $a, b, c, d$ are all positive integers less than $5$, not necessarily distinct, find the number of ordered quadruples $(a, b, c, d)$ such that $a^b - c^d$ is divisible by $5$. PS. You had better use hide for answers. Last 4 sets have been posted [url=https://artofproblemsolving.com/community/c4h2777362p24370554]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 May Olympiad, 4

With $150$ white cubes of $1 \times 1 \times 1$ a prism of $6 \times 5 \times 5$ is assembled, its six faces are painted blue and then the prism is disassembled. Lucrecia must build a new prism, without holes, exclusively using cubes that have at least one blue face and so that the faces of Lucrecia's prism are all completely blue. Give the dimensions of the prism with the largest volume that Lucrecia can assemble.

1941 Putnam, A5

Tags: parabola , conic
The line $L$ is parallel to the plane $y=z$ and meets the parabola $2x=y^2 ,z=0$ and the parabola $3x=z^2, y=0$. Prove that if $L$ moves freely subject to these constraints then it generates the surface $x=(y-z)\left(\frac{y}{2}-\frac{z}{3}\right)$.

2019 BMT Spring, Tie 1

Let $p$ be a prime and $n$ a positive integer below $100$. What’s the probability that $p$ divides $n$?

2013 Princeton University Math Competition, 1

Tags:
Suppose $a,b,c>0$ are integers such that \[abc-bc-ac-ab+a+b+c=2013.\] Find the number of possibilities for the ordered triple $(a,b,c)$.

2002 IberoAmerican, 1

In a triangle $\triangle{ABC}$ with all its sides of different length, $D$ is on the side $AC$, such that $BD$ is the angle bisector of $\sphericalangle{ABC}$. Let $E$ and $F$, respectively, be the feet of the perpendicular drawn from $A$ and $C$ to the line $BD$ and let $M$ be the point on $BC$ such that $DM$ is perpendicular to $BC$. Show that $\sphericalangle{EMD}=\sphericalangle{DMF}$.

1991 Iran MO (2nd round), 2

Let $ABCD$ be a tetragonal. [b](a)[/b] If the plane $(P)$ cuts $ABCD,$ find the necessary and sufficient condition such that the area formed from the intersection of the plane $(P)$ and the tetragonal be a parallelogram. Prove that the problem has three solutions in this case. [b](b)[/b] Consider one of the solutions of [b](a)[/b]. Find the situation of the plane $(P)$ for which the parallelogram has maximum area. [b](c)[/b] Find a plane $(P)$ for which the parallelogram be a lozenge and then find the length side of his lozenge in terms of the length of the edges of $ABCD.$

1990 Iran MO (2nd round), 3

[b](a)[/b] For every positive integer $n$ prove that \[1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2} <2\] [b](b)[/b] Let $X=\{1, 2, 3 ,\ldots, n\} \ ( n \geq 1)$ and let $A_k$ be non-empty subsets of $X \ (k=1,2,3, \ldots , 2^n -1).$ If $a_k$ be the product of all elements of the set $A_k,$ prove that \[\sum_{i=1}^{m} \sum_{j=1}^m \frac{1}{a_i \cdot j^2} <2n+1\]