This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022/2023 Tournament of Towns, P5

Tags: distance , geometry
The distance between any two of five given points exceeds 2. Is it true that the distance between some two of these points exceeds 3 if these five points are in a) the plane; and b) three-dimensional space? [i]Alexey Tolpygo[/i]

2024 Korea Junior Math Olympiad, 8

Tags: function , algebra
$f$ is a function from the set of positive integers to the set of all integers that satisfies the following. [b]$\cdot$[/b] $f(1)=1, f(2)=-1$ [b]$\cdot$[/b] $f(n)+f(n+1)+f(n+2)=f(\left\lfloor\frac{n+2}{3}\right\rfloor)$ Find the number of positive integers $k$ not exceeding $1000$ such that $f(3)+f(6)+\cdots+f(3k-3)+f(3k)=5$.

2022 Bolivia Cono Sur TST, P4

Find all right triangles with integer sides and inradius 6.

2011 Princeton University Math Competition, A3

Tags: geometry
Let $ABC$ be an equilateral triangle having sides of length 1, and let $P$ be a point in the interior of $\Delta ABC$ such that $\angle ABP = 15 ^\circ$. Find, with proof, the minimum possible value of $AP + BP + CP$. ([b]Comment:[/b] In fact this question is incorrect, unfortunately. A more reasonable problem: Prove that $AP + BP + CP \ge \sqrt{3}$.)

2007 Princeton University Math Competition, 4

Find $\frac{area(CDF)}{area(CEF)}$ in the figure. [asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(5.75cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2, xmax = 21, ymin = -2, ymax = 16; /* image dimensions */ /* draw figures */ draw((0,0)--(20,0)); draw((13.48,14.62)--(7,0)); draw((0,0)--(15.93,9.12)); draw((13.48,14.62)--(20,0)); draw((13.48,14.62)--(0,0)); label("6",(15.16,12.72),SE*labelscalefactor); label("10",(18.56,5.1),SE*labelscalefactor); label("7",(3.26,-0.6),SE*labelscalefactor); label("13",(13.18,-0.71),SE*labelscalefactor); label("20",(5.07,8.33),SE*labelscalefactor); /* dots and labels */ dot((0,0),dotstyle); label("$B$", (-1.23,-1.48), NE * labelscalefactor); dot((20,0),dotstyle); label("$C$", (19.71,-1.59), NE * labelscalefactor); dot((7,0),dotstyle); label("$D$", (6.77,-1.64), NE * labelscalefactor); dot((13.48,14.62),dotstyle); label("$A$", (12.36,14.91), NE * labelscalefactor); dot((15.93,9.12),dotstyle); label("$E$", (16.42,9.21), NE * labelscalefactor); dot((9.38,5.37),dotstyle); label("$F$", (9.68,4.5), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]

2011 All-Russian Olympiad, 3

Let $P(a)$ be the largest prime positive divisor of $a^2 + 1$. Prove that exist infinitely many positive integers $a, b, c$ such that $P(a)=P(b)=P(c)$. [i]A. Golovanov[/i]

2016 NZMOC Camp Selection Problems, 3

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.

2013 ISI Entrance Examination, 6

Let $p(x)$ and $q(x)$ be two polynomials, both of which have their sum of coefficients equal to $s.$ Let $p,q$ satisfy $p(x)^3-q(x)^3=p(x^3)-q(x^3).$ Show that (i) There exists an integer $a\geq1$ and a polynomial $r(x)$ with $r(1)\neq0$ such that \[p(x)-q(x)=(x-1)^ar(x).\] (ii) Show that $s^2=3^{a-1},$ where $a$ is described as above.

2009 Indonesia TST, 4

Prove that there exist infinitely many positive integers $ n$ such that $ n!$ is not divisible by $ n^2\plus{}1$.

2022 Brazil EGMO TST, 5

For a given value $t$, we consider number sequences $a_1, a_2, a_3,...$ such that $a_{n+1} =\frac{a_n + t}{a_n + 1}$ for all $n \ge 1$. (a) Suppose that $t = 2$. Determine all starting values $a_1 > 0$ such that $\frac43 \le a_n \le \frac32$ holds for all $n \ge 2$. (b) Suppose that $t = -3$. Investigate whether $a_{2020} = a_1$ for all starting values $a_1$ different from $-1$ and $1$.

2012 China Team Selection Test, 1

Given an integer $n\ge 2$. Prove that there only exist a finite number of n-tuples of positive integers $(a_1,a_2,\ldots,a_n)$ which simultaneously satisfy the following three conditions: [list] [*] $a_1>a_2>\ldots>a_n$; [*] $\gcd (a_1,a_2,\ldots,a_n)=1$; [*] $a_1=\sum_{i=1}^{n}\gcd (a_i,a_{i+1})$,where $a_{n+1}=a_1$.[/list]

1966 AMC 12/AHSME, 31

Triangle $ABC$ is inscribed in a circle with center $O'$. A circle with center $O$ is inscribed in triangle $ABC$. $AO$ is drawn, and extended to intersect the larger circle in $D$. Then, we must have: $\text{(A)}\ CD=BD=O'D \qquad \text{(B)}\ AO=CO=OD \qquad \text{(C)}\ CD=CO=BD \qquad\\ \text{(D)}\ CD=OD=BD \qquad \text{(E)}\ O'B=O'C=OD $ [asy] size(200); defaultpen(linewidth(0.8)+fontsize(12pt)); pair A=origin,B=(15,0),C=(5,9),O=incenter(A,B,C),Op=circumcenter(A,B,C); path incirc = incircle(A,B,C),circumcirc = circumcircle(A,B,C),line=A--3*O; pair D[]=intersectionpoints(circumcirc,line); draw(A--B--C--A--D[0]^^incirc^^circumcirc); dot(O^^Op,linewidth(4)); label("$A$",A,dir(185)); label("$B$",B,dir(355)); label("$C$",C,dir(95)); label("$D$",D[0],dir(O--D[0])); label("$O$",O,NW); label("$O'$",Op,E);[/asy]

2011 National Olympiad First Round, 27

Tags: induction
Let $(a_n)_{n=1}^{\infty}$ be a real sequence such that $a_1=1, a_3=4$ and for every $n\geq 2$, $a_{n+1}+a_{n-1}=2a_n+1$. What is $a_{2011}$? $\textbf{(A)}\ 2^{2010} \qquad\textbf{(B)}\ 2021056 \qquad\textbf{(C)}\ 1010528 \qquad\textbf{(D)}\ 3016 \qquad\textbf{(E)}\ 2011$

2003 Romania Team Selection Test, 13

A parliament has $n$ senators. The senators form 10 parties and 10 committees, such that any senator belongs to exactly one party and one committee. Find the least possible $n$ for which it is possible to label the parties and the committees with numbers from 1 to 10, such that there are at least 11 senators for which the numbers of the corresponding party and committee are equal.

1985 IMO Longlists, 56

Let $ABCD$ be a rhombus with angle $\angle A = 60^\circ$. Let $E$ be a point, different from $D$, on the line $AD$. The lines $CE$ and $AB$ intersect at $F$. The lines $DF$ and $BE$ intersect at $M$. Determine the angle $\angle BMD$ as a function of the position of $E$ on $AD.$

MOAA Team Rounds, 2021.9

Tags: team
Mr. DoBa has a bag of markers. There are 2 blue, 3 red, 4 green, and 5 yellow markers. Mr. DoBa randomly takes out two markers from the bag. The probability that these two markers are different colors can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Raina Yang[/i]

2018-2019 Fall SDPC, 6

Tags: quadratic , algebra
Alice and Bob play a game. Alice writes an equation of the form $ax^2 + bx + c =0$, choosing $a$, $b$, $c$ to be real numbers (possibly zero). Bob can choose to add (or subtract) any real number to each of $a$, $b$, $c$, resulting in a new equation. Bob wins if the resulting equation is quadratic and has two distinct real roots; Alice wins otherwise. For which choices of $a$, $b$, $c$ does Alice win, no matter what Bob does?

2009 IMS, 1

$ G$ is a group. Prove that the following are equivalent: 1. All subgroups of $ G$ are normal. 2. For all $ a,b\in G$ there is an integer $ m$ such that $ (ab)^m\equal{}ba$.

2024 Belarusian National Olympiad, 11.6

Let $2=p_1<p_2<\ldots<p_n<\ldots$ be all prime numbers. Prove that for any positive integer $n \geq 3$ there exist at least $p_n+n-1$ prime numbers, that do not exceed $p_1p_2\ldots p_n$ [i]I. Voronovich[/i]

2019 China Girls Math Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\odot O.$ The lines tangent to $\odot O$ at $A,B$ intersect at $L.$ $M$ is the midpoint of the segment $AB.$ The line passing through $D$ and parallel to $CM$ intersects $ \odot (CDL) $ at $F.$ Line $CF$ intersects $DM$ at $K,$ and intersects $\odot O$ at $E$ (different from point $C$). Prove that $EK=DK.$

2021 AMC 12/AHSME Fall, 6

Tags: asymptote
As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$. Point $F$ lies on $\overline{AD}$ so that $DE=DF$, and $ABCD$ is a square. What is the degree measure of $\angle AFE?$ [asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy] $\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$

2017-2018 SDPC, 5

Tags: algebra
Given positive real numbers $a,b,c$ such that $abc=1$, find the maximum possible value of $$\frac{1}{(4a+4b+c)^3}+\frac{1}{(4b+4c+a)^3}+\frac{1}{(4c+4a+b)^3}.$$

1990 Bundeswettbewerb Mathematik, 3

Given any five nonnegative real numbers with the sum $1$, show that they can be arranged around a circle in such a way that the five products of two consecutive numbers sum up to at most $1/5$.

1972 Bundeswettbewerb Mathematik, 3

The arithmetic mean of two different positive integers $x,y$ is a two digit integer. If one interchanges the digits, the geometric mean of these numbers is archieved. a) Find $x,y$. b) Show that a)'s solution is unique up to permutation if we work in base $g=10$, but that there is no solution in base $g=12$. c) Give more numbers $g$ such that a) can be solved; give more of them such that a) can't be solved, too.

2008 India Regional Mathematical Olympiad, 6

Find the number of all integer-sided [i]isosceles obtuse-angled[/i] triangles with perimeter $ 2008$. [16 points out of 100 for the 6 problems]