This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 AMC 8, 19

Tags:
The sum of $25$ consecutive even integers is $10,000$. What is the largest of these $25$ consecutive integers? $\textbf{(A)}\mbox{ }360\qquad\textbf{(B)}\mbox{ }388\qquad\textbf{(C)}\mbox{ }412\qquad\textbf{(D)}\mbox{ }416\qquad\textbf{(E)}\mbox{ }424$

2006 All-Russian Olympiad Regional Round, 8.6

In a checkered square $101 \times 101$, each cell of the inner square $99 \times 99$ is painted in one of ten colors (cells adjacent to the border of the square, not painted). Could it turn out that in every in a $3\times 3$ square, is exactly one more cell painted the same color as the central cell?

2024 Ecuador NMO (OMEC), 2

Let $s(n)$ the sum of digits of $n$. Find the greatest 3-digits number $m$ such that $3s(m)=s(3m)$.

2009 F = Ma, 13

Tags:
Lucy (mass $\text{33.1 kg}$), Henry (mass $\text{63.7 kg}$), and Mary (mass $\text{24.3 kg}$) sit on a lightweight seesaw at evenly spaced $\text{2.74 m}$ intervals (in the order in which they are listed; Henry is between Lucy and Mary) so that the seesaw balances. Who exerts the most torque (in terms of magnitude) on the seesaw? Ignore the mass of the seesaw. (A) Henry (B) Lucy (C) Mary (D) They all exert the same torque. (E) There is not enough information to answer the question.

2024 BMT, 9

Tags: geometry
Let $\triangle{ABC}$ be a triangle with incenter $I,$ and let $M$ be the midpoint of $\overline{BC}.$ Line $AM$ intersects the circumcircle of triangle $\triangle{IBC}$ at points $P$ and $Q.$ Suppose that $AP=13, AQ=83,$ and $BC=56.$ Find the perimeter of $\triangle{ABC}.$

2018 Czech-Polish-Slovak Junior Match, 3

The teacher gave each of her $37$ students $36$ pencils in different colors. It turned out that each pair of students received exactly one pencil of the same color. Determine the smallest possible number of different colors of pencils distributed.

2009 Serbia National Math Olympiad, 1

Tags: geometry , triangle
In a scalene triangle $ABC$, $\alpha$ and $\beta$ respectively denote the interior angles at vertixes $A$ and $B$. The bisectors of these two angles meet the opposite sides of the triangle at points $D$ and $E$, respectively. Prove that the acute angle between the lines $DE$ and $AB$ does not exceed $ \frac{ | \alpha - \beta |}{3}$ . [i]Proposed by Dusan Djukic[/i]

2001 Argentina National Olympiad, 6

Given a rectangle $\mathcal{R}$ of area $100000 $, Pancho must completely cover the rectangle $\mathcal{R}$ with a finite number of rectangles with sides parallel to the sides of $\mathcal{R}$ . Next, Martín colors some rectangles of Pancho's cover red so that no two red rectangles have interior points in common. If the red area is greater than $0.00001$, Martin wins. Otherwise, Pancho wins. Prove that Pancho can cover to ensure victory,

2016 PAMO, 4

Let $x,y,z$ be positive real numbers such that $xyz=1$. Prove that $\frac{1}{(x+1)^2+y^2+1}$ $+$ $\frac{1}{(y+1)^2+z^2+1}$ $+$ $\frac{1}{(z+1)^2+x^2+1}$ $\leq$ ${\frac{1}{2}}$.

2018 Greece Junior Math Olympiad, 1

a) Does there exist a real number $x$ such that $x+\sqrt{3}$ and $x^2+\sqrt{3}$ are both rationals? b) Does there exist a real number $y$ such that $y+\sqrt{3}$ and $y^3+\sqrt{3}$ are both rationals?

2021 Romanian Master of Mathematics Shortlist, N2

We call a set of positive integers [i]suitable [/i] if none of its elements is coprime to the sum of all elements of that set. Given a real number $\varepsilon \in (0,1)$, prove that, for all large enough positive integers $N$, there exists a suitable set of size at least $\varepsilon N$, each element of which is at most $N$.

2022 LMT Fall, 1

Let $x$ be the positive integer satisfying $5^2 +28^2 +39^2 = 24^2 +35^2 + x^2$. Find $x$.

1966 IMO Longlists, 56

In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.

2007 Purple Comet Problems, 15

We have some identical paper squares which are black on one side of the sheet and white on the other side. We can join nine squares together to make a $3$ by $3$ sheet of squares by placing each of the nine squares either white side up or black side up. Two of these $3$ by $3$ sheets are distinguishable if neither can be made to look like the other by rotating the sheet or by turning it over. How many distinguishable $3$ by $3$ squares can we form?

1997 ITAMO, 3

The positive quadrant of a coordinate plane is divided into unit squares by lattice lines. Is it possible to color the squares in black and white so that: (i) In every square of side $n$ ($n \in N$) with a vertex at the origin and sides are parallel to the axes, there are more black than white squares; (ii) Every diagonal parallel to the line $y = x$ intersects only finitely many black squares?

2019 EGMO, 2

Let $n$ be a positive integer. Dominoes are placed on a $2n \times 2n$ board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each $n$, determine the largest number of dominoes that can be placed in this way. (A domino is a tile of size $2 \times 1$ or $1 \times 2$. Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be adjacent if they are different and share a common side.)

2016 Benelux, 2

Let $n$ be a positive integer. Suppose that its positive divisors can be partitioned into pairs (i.e. can be split in groups of two) in such a way that the sum of each pair is a prime number. Prove that these prime numbers are distinct and that none of these are a divisor of $n.$

2005 All-Russian Olympiad Regional Round, 11.6

11.6 Construct for each vertex of the quadrilateral of area $S$ a symmetric point wrt to the diagonal, which doesn't contain this vertex. Let $S'$ be an area of the obtained quadrilateral. Prove that $\frac{S'}{S}<3$. ([i]L. Emel'yanov[/i])

1968 Putnam, B3

Given that a $60^{\circ}$ angle cannot be trisected with ruler and compass, prove that a $\frac{120^{\circ}}{n}$ angle cannot be trisected with ruler and compass for $n=1,2,\ldots$

2024-IMOC, A5

Tags: inequalities
The non-negative numbers $ x_1, x_2, \ldots, x_5$ satisfy $ \sum_{i \equal{} 1}^5 \frac {1}{1 \plus{} x_i} \equal{} 1$. Prove that $ \sum_{i \equal{} 1}^5 \frac {x_i}{4 \plus{} x_i^2} \leq 1$.

2014 Purple Comet Problems, 21

Tags: vector , algorithm
Let $a$, $b$, $c$ be positive integers such that $29a + 30b + 31c = 366$. Find $19a + 20b + 21c$.

2020 Balkan MO Shortlist, G5

Let $ABC$ be an isosceles triangle with $AB = AC$ and $\angle A = 45^o$. Its circumcircle $(c)$ has center $O, M$ is the midpoint of $BC$ and $D$ is the foot of the perpendicular from $C$ to $AB$. With center $C$ and radius $CD$ we draw a circle which internally intersects $AC$ at the point $F$ and the circle $(c)$ at the points $Z$ and $E$, such that $Z$ lies on the small arc $BC$ and $E$ on the small arc $AC$. Prove that the lines $ZE$, $CO$, $FM$ are concurrent. [i]Brazitikos Silouanos, Greece[/i]

2010 Contests, 3

Let $ABC$ be a triangle and let $D\in (BC)$ be the foot of the $A$- altitude. The circle $w$ with the diameter $[AD]$ meet again the lines $AB$ , $AC$ in the points $K\in (AB)$ , $L\in (AC)$ respectively. Denote the meetpoint $M$ of the tangents to the circle $w$ in the points $K$ , $L$ . Prove that the ray $[AM$ is the $A$-median in $\triangle ABC$ ([b][u]Serbia[/u][/b]).

2024/2025 TOURNAMENT OF TOWNS, P5

Tags: algebra
Given $15$ coins of the same appearance. It is known that one of them weighs $1$g, two coins weigh $2$g each, three coins weigh $3$g each, four coins weigh $4$g each, and five coins weigh $5$g each. There are inscriptions on the coins, indicating their weight. It is allowed to perform two weighings on a balance without additional weights. Find a way to check that there are no wrong inscriptions. (It is not required to check which inscriptions are wrong and which ones are correct.) (8 marks)

2010 Contests, 3

In an acute-angled triangle $ABC$, $CF$ is an altitude, with $F$ on $AB$, and $BM$ is a median, with $M$ on $CA$. Given that $BM=CF$ and $\angle MBC=\angle FCA$, prove that triangle $ABC$ is equilateral.