This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Stars of Mathematics, 4

Tags: inequalities
Let be a natural number $ n\ge 4 $ and $ n $ nonnegative numbers $ a,b,\ldots ,c. $ Prove that $$ \prod_{\text{cyc} } (a+b+c)^2 \ge 2^n\prod_{\text{cyc} } (a+b)^2, $$ and tell in which circumstances equality happens.

2023 Baltic Way, 17

Find all pairs of positive integers $(a, b)$, such that $S(a^{b+1})=a^b$, where $S(m)$ denotes the digit sum of $m$.

2001 Romania National Olympiad, 3

We consider a right trapezoid $ABCD$, in which $AB||CD,AB>CD,AD\perp AB$ and $AD>CD$. The diagonals $AC$ and $BD$ intersect at $O$. The parallel through $O$ to $AB$ intersects $AD$ in $E$ and $BE$ intersects $CD$ in $F$. Prove that $CE\perp AF$ if and only if $AB\cdot CD=AD^2-CD^2$ .

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 3

Show that there exists the maximum value of the function $f(x,\ y)=(3xy+1)e^{-(x^2+y^2)}$ on $\mathbb{R}^2$, then find the value.

2010 Contests, 1

$a)$ Let $p$ and $q$ be distinct prime numbers such that $p+q^2$ divides $p^2+q$. Prove that $p+q^2$ divides $pq-1$. $b)$ Find all prime numbers $p$ such that $p+121$ divides $p^2+11$.

2000 Singapore MO Open, 1

Triangle $ABC$ is inscribed in a circle with center $O$. Let $D$ and $E$ be points on the respective sides $AB$ and $AC$ so that $DE$ is perpendicular to $AO$. Show that the four points $B,D,E$ and $C$ lie on a circle.

2022 CMIMC, 2.4

Dilhan is running around a track for $12$ laps. If halfway through a lap, Dilhan has his phone on him, he has a $\frac{1}{3}$ chance to drop it there. If Dilhan runs past his phone on the ground, he will attempt to pick it up with a $\frac{2}{3}$ chance of success, and won't drop it for the rest of the lap. He starts with his phone at the start of the 5K, what is the chance he still has it when he finished the 5K? [i]Proposed by Zack Lee, Daniel Li, Dilhan Salgado[/i]

2019 Irish Math Olympiad, 7

Tags: algebra
Three non-zero real numbers $a, b, c$ satisfy $a + b + c = 0$ and $a^4 + b^4 + c^4 = 128$. Determine all possible values of $ab + bc + ca$.

2021 Vietnam National Olympiad, 7

Let $ ABC $ be an inscribed triangle in circle $ (O) $. Let $ D $ be the intersection of the two tangent lines of $ (O) $ at $ B $ and $ C $. The circle passing through $ A $ and tangent to $ BC $ at $ B $ intersects the median passing $ A $ of the triangle $ ABC $ at $ G $. Lines $ BG, CG $ intersect $ CD, BD $ at $ E, F $ respectively. a) The line passing through the midpoint of $ BE $ and $ CF $ cuts $ BF, CE $ at $ M, N $ respectively. Prove that the points $ A, D, M, N $ belong to the same circle. b) Let $ AD, AG $ intersect the circumcircle of the triangles $ DBC, GBC $ at $ H, K $ respectively. The perpendicular bisectors of $ HK, HE$, and $HF $ cut $ BC, CA$, and $AB $ at $ R, P$, and $Q $ respectively. Prove that the points $ R, P$, and $Q $ are collinear.

1980 Austrian-Polish Competition, 1

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2016 Germany Team Selection Test, 3

Tags: geometry
Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.

2005 Manhattan Mathematical Olympiad, 3

Tags:
Are there six different positive odd numbers $a,b,c,d,e,f$ such that \[ 1/a + 1/b + 1/c + 1/d + 1/e + 1/f = 1?\]

2023 CCA Math Bonanza, L1.3

Tags:
Let $P$ and $Q$ be two concentric circles, and let $p_1 \dots p_{20}$ be equally spaced points around $P$ and $q_1 \dots q_{23}$ be equally spaced points around $Q$. How many ways are there to connect each $p_i$ to a distinct $q_j$ with some curve (not necessarily a straight line) so that no two curves cross and no curve crosses either circle? [i]Lightning 1.3[/i]

1988 Greece Junior Math Olympiad, 1

Tags: algebra
i) Simplify $\left(a-\frac{4ab}{a+b}+b\right): \left(\frac{a}{a+b}-\frac{b}{b-a}-\frac{2ab}{a^2-b^2}\right)$ ii) Simplify $\frac{2x^2-(3a+b)x+a^2+ab}{2x^2-(a+3b)x+ab+b^2}$

1989 AMC 8, 8

Tags:
$(2\times 3\times 4)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) =$ $\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 24 \qquad \text{(E)}\ 26$

2003 Serbia Team Selection Test, 3

Each edge and each diagonal of the convex $ n$-gon $ (n\geq 3)$ is colored in red or blue. Prove that the vertices of the $ n$-gon can be labeled as $ A_1,A_2,...,A_n$ in such a way that one of the following two conditions is satisfied: (a) all segments $ A_1A_2,A_2A_3,...,A_{n\minus{}1}A_n,A_nA_1$ are of the same colour. (b) there exists a number $ k, 1<k<n$ such that the segments $ A_1A_2,A_2A_3,...,A_{k\minus{}1}A_k$ are blue, and the segments $ A_kA_{k\plus{}1},...,A_{n\minus{}1}A_n,A_nA_1$ are red.

2017 Math Prize for Girls Problems, 19

Tags:
Up to similarity, there is a unique nondegenerate convex equilateral 13-gon whose internal angles have measures that are multiples of 20 degrees. Find it. Give your answer by listing the degree measures of its 13 [i]external[/i] angles in clockwise or counterclockwise order. Start your list with the biggest external angle. You don't need to write the degree symbol $^\circ$.

1965 AMC 12/AHSME, 20

For every $ n$ the sum of $ n$ terms of an arithmetic progression is $ 2n \plus{} 3n^2$. The $ r$th term is: $ \textbf{(A)}\ 3r^2 \qquad \textbf{(B)}\ 3r^2 \plus{} 2r \qquad \textbf{(C)}\ 6r \minus{} 1 \qquad \textbf{(D)}\ 5r \plus{} 5 \qquad \textbf{(E)}\ 6r \plus{} 2 \qquad$

1986 China Team Selection Test, 4

Mark $4 \cdot k$ points in a circle and number them arbitrarily with numbers from $1$ to $4 \cdot k$. The chords cannot share common endpoints, also, the endpoints of these chords should be among the $4 \cdot k$ points. [b]i.[/b] Prove that $2 \cdot k$ pairwisely non-intersecting chords can be drawn for each of whom its endpoints differ in at most $3 \cdot k - 1$. [b]ii.[/b] Prove that the $3 \cdot k - 1$ cannot be improved.

1975 Chisinau City MO, 87

Prove that among any $100$ natural numbers there are two numbers whose difference is divisible by $99$.

2011 Hanoi Open Mathematics Competitions, 2

What is the smallest number ? (A) $3$ (B) $2^{\sqrt2}$ (C) $2^{1+\frac{1}{\sqrt2}}$ (D) $2^{\frac12} + 2^{\frac23}$ (E) $2^{\frac53}$

2018 CCA Math Bonanza, I13

$P\left(x\right)$ is a polynomial of degree at most $6$ such that such that $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$, $P\left(4\right)$, $P\left(5\right)$, $P\left(6\right)$, and $P\left(7\right)$ are $1$, $2$, $3$, $4$, $5$, $6$, and $7$ in some order. What is the maximum possible value of $P\left(8\right)$? [i]2018 CCA Math Bonanza Individual Round #13[/i]

2010 Princeton University Math Competition, 1

Tags: geometry
As in the following diagram, square $ABCD$ and square $CEFG$ are placed side by side (i.e. $C$ is between $B$ and $E$ and $G$ is between $C$ and $D$). If $CE = 14$, $AB > 14$, compute the minimal area of $\triangle AEG$. [asy] size(120); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(real x, real y) { pair P = (x,y); dot(P,linewidth(3)); return P; } int big = 30, small = 14; filldraw((0,big)--(big+small,0)--(big,small)--cycle, rgb(0.9,0.5,0.5)); draw(scale(big)*unitsquare); draw(shift(big,0)*scale(small)*unitsquare); label("$A$",D2(0,big),NW); label("$B$",D2(0,0),SW); label("$C$",D2(big,0),SW); label("$D$",D2(big,big),N); label("$E$",D2(big+small,0),SE); label("$F$",D2(big+small,small),NE); label("$G$",D2(big,small),NE); [/asy]

2008 IMO Shortlist, 4

For an integer $ m$, denote by $ t(m)$ the unique number in $ \{1, 2, 3\}$ such that $ m \plus{} t(m)$ is a multiple of $ 3$. A function $ f: \mathbb{Z}\to\mathbb{Z}$ satisfies $ f( \minus{} 1) \equal{} 0$, $ f(0) \equal{} 1$, $ f(1) \equal{} \minus{} 1$ and $ f\left(2^{n} \plus{} m\right) \equal{} f\left(2^n \minus{} t(m)\right) \minus{} f(m)$ for all integers $ m$, $ n\ge 0$ with $ 2^n > m$. Prove that $ f(3p)\ge 0$ holds for all integers $ p\ge 0$. [i]Proposed by Gerhard Woeginger, Austria[/i]

2017 Princeton University Math Competition, B2

Tags: geometry
A kite is inscribed in a circle with center $O$ and radius $60$. The diagonals of the kite meet at a point $P$, and $OP$ is an integer. The minimum possible area of the kite can be expressed in the form $a\sqrt{b}$, where $a$ and $b$ are positive integers and $b$ is squarefree. Find $a+b$.