Found problems: 85335
2013 Stanford Mathematics Tournament, 1
Robin goes birdwatching one day. he sees three types of birds: penguins, pigeons, and robins. $\frac23$ of the birds he sees are robins. $\frac18$ of the birds he sees are penguins. He sees exactly $5$ pigeons. How many robins does Robin see?
2018 Greece Team Selection Test, 4
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
1970 AMC 12/AHSME, 23
The number $10!$ $(10$ is written in base $10)$, when written in the base $12$ system, ends in exactly $k$ zeroes. The value of $k$ is
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) } 5$
2003 AMC 10, 12
Al, Betty, and Clare split $ \$1000$ among them to be invested in different ways. Each begins with a different amount. At the end of one year they have a total of $ \$1500$. Betty and Clare have both doubled their money, whereas Al has managed to lose $ \$100$. What was Al’s original portion?
$ \textbf{(A)}\ \$ 250 \qquad
\textbf{(B)}\ \$ 350 \qquad
\textbf{(C)}\ \$ 400 \qquad
\textbf{(D)}\ \$ 450 \qquad
\textbf{(E)}\ \$ 500$
1967 Poland - Second Round, 2
There are 100 persons in a hall, everyone knowing at least 66 of the others. Prove that there is a case in which among any four some two don’t know each other.
2018 Sharygin Geometry Olympiad, 4
Let $ABCD$ be a cyclic quadrilateral. A point $P$ moves along the arc $AD$ which does not contain $B$ and $C$. A fixed line $l$, perpendicular to $BC$, meets the rays $BP$, $CP$ at points $B_0$, $C_0$ respectively. Prove that the tangent at $P$ to the circumcircle of triangle $PB_0C_0$ passes through some fixed point.
1998 Harvard-MIT Mathematics Tournament, 4
Find the range of $ f(A)=\frac{\sin A(3\cos^{2}A+\cos^{4}A+3\sin^{2}A+\sin^{2}A\cos^{2}A)}{\tan A (\sec A-\sin A\tan A)} $ if $A\neq \dfrac{n\pi}{2}$.
2021 HMIC, 5
In an $n \times n$ square grid, $n$ squares are marked so that every rectangle composed of exactly $n$ grid squares contains at least one marked square. Determine all possible values of $n$.
2003 Romania National Olympiad, 4
In tetrahedron $ ABCD$, $ G_1,G_2$ and $ G_3$ are barycenters of the faces $ ACD,ABD$ and $ BCD$ respectively.
(a) Prove that the straight lines $ BG_1,CG_2$ and $ AG_3$ are concurrent.
(b) Knowing that $ AG_3\equal{}8,BG_1\equal{}12$ and $ CG_2\equal{}20$ compute the maximum possible value of the volume of $ ABCD$.
2022 Math Prize for Girls Problems, 19
Let $S_-$ be the semicircular arc defined by
\[
(x + 1)^2 + (y - \frac{3}{2})^2 = \frac{1}{4} \text{ and } x \le -1.
\]
Let $S_+$ be the semicircular arc defined by
\[
(x - 1)^2 + (y - \frac{3}{2})^2 = \frac{1}{4} \text{ and } x \ge 1.
\]
Let $R$ be the locus of points $P$ such that $P$ is the intersection of two lines, one of the form $Ax + By = 1$ where $(A, B) \in S_-$ and the other of the form $Cx + Dy = 1$ where $(C, D) \in S_+$. What is the area of $R$?
2009 Purple Comet Problems, 23
Square $ABCD$ has side length $4$. Points $E$ and $F$ are the midpoints of sides $AB$ and $CD$, respectively. Eight $1$ by $2$ rectangles are placed inside the square so that no two of the eight rectangles overlap (see diagram). If the arrangement of eight rectangles is chosen randomly, then there are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that none of the rectangles crosses the line segment $EF$ (as in the arrangement on the right). Find $m + n$.
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(10pt));
real r = 7;
path square=origin--(4,0)--(4,4)--(0,4)--cycle;
draw(square^^shift((r,0))*square,linewidth(1));
draw((1,4)--(1,0)^^(3,4)--(3,0)^^(0,2)--(1,2)^^(1,3)--(3,3)^^(1,1)--(3,1)^^(2,3)--(2,1)^^(3,2)--(4,2));
draw(shift((r,0))*((2,4)--(2,0)^^(0,2)--(4,2)^^(0,1)--(4,1)^^(0,3)--(2,3)^^(3,4)--(3,2)));
label("A",(4,4),NE);
label("A",(4+r,4),NE);
label("B",(0,4),NW);
label("B",(r,4),NW);
label("C",(0,0),SW);
label("C",(r,0),SW);
label("D",(4,0),SE);
label("D",(4+r,0),SE);
label("E",(2,4),N);
label("E",(2+r,4),N);
label("F",(2,0),S);
label("F",(2+r,0),S);
[/asy]
2004 Miklós Schweitzer, 1
The Lindelöf number $L(X)$ of a topological space $X$ is the least infinite cardinal $\lambda$ with the property that every open covering of $X$ has a subcovering of cardinality at most $\lambda$. Prove that if evert non-countably infinite subset of a first countable space $X$ has a point of condensation, then $L(X)=\sup L(A)$, where $A$ runs over the separable closed subspaces of $X$.
(A point of condensation of a subset $H\subseteq X$ is a point $x\in X$ such that any neighbourhood of $x$ intersects $H$ in a non-countably infinite set.)
2022 LMT Fall, 3
Billiam is distributing his ample supply of balls among an ample supply of boxes. He distributes the balls as follows: he places a ball in the first empty box, and then for the greatest positive integer n such that all $n$ boxes from box $1$ to box $n$ have at least one ball, he takes all of the balls in those $n$ boxes and puts them into box $n +1$. He then repeats this process indefinitely. Find the number of repetitions of this process it takes for one box to have at least $2022$ balls.
2023 Belarusian National Olympiad, 11.8
Positive integer $n>2$ is called [i]good[/i] if there exist $n$ distinct points on plane($X_1, \ldots, X_n$), such that for all $1 \leq i \leq n$ vectors $X_iX_1, \ldots, X_iX_n$ can be partitioned into two groups with equal sums.
Find all [i]good[/i] numbers
2008 Harvard-MIT Mathematics Tournament, 25
Alice and the Cheshire Cat play a game. At each step, Alice either (1) gives the cat a penny, which causes the cat to change the number of (magic) beans that Alice has from $ n$ to $ 5n$ or (2) gives the cat a nickel, which causes the cat to give Alice another bean. Alice wins (and the cat disappears) as soon as the number of beans Alice has is greater than $ 2008$ and has last two digits $ 42$. What is the minimum number of cents Alice can spend to win the game, assuming she starts with 0 beans?
2019 239 Open Mathematical Olympiad, 1
On the island of knights and liars, a tennis tournament was held, in which $100$ people participated in. Each two of them played exactly $1$ time with the other one. After the tournament, each of the participants declared: “I have beaten as many knights as liars,” while all the knights told the truth, and all the liars lied. What is the largest number of knights that could participate in the tournament?
2008 Princeton University Math Competition, A1
Find all positive real numbers $b$ for which there exists a positive real number $k$ such that $n-k \leq \left\lfloor bn \right\rfloor <n$ for all positive integers $n$.
ICMC 3, 1
Alice and Bob play a game on a sphere which is initially marked with a finite number of points. Alice and Bob then take turns making moves, with Alice going first:
- On Alice’s move, she counts the number of marked points on the sphere, \(n\). She then marks another \(n + 1\) points on the sphere.
- On Bob’s move, he chooses one hemisphere and removes all marked points on that hemisphere, including any marked points on the boundary of the hemisphere.
Can Bob always guarantee that after a finite number of moves, the sphere contains no marked points?
(A [i]hemisphere[/i] is the region on a sphere that lies completely on one side of any plane passing through the centre of the sphere.)
[i]proposed by the ICMC Problem Committee[/i]
1992 Turkey Team Selection Test, 2
The line passing through $B$ is perpendicular to the side $AC$ at $E$. This line meets the circumcircle of $\triangle ABC$ at $D$. The foot of the perpendicular from $D$ to the side $BC$ is $F$. If $O$ is the center of the circumcircle of $\triangle ABC$, prove that $BO$ is perpendicular to $EF$.
2009 Poland - Second Round, 2
Find all integer numbers $n\ge 4$ which satisfy the following condition: from every $n$ different $3$-element subsets of $n$-element set it is possible to choose $2$ subsets, which have exactly one element in common.
2009 Jozsef Wildt International Math Competition, W. 27
Let $a$, $n$ be positive integers such that $a^n$ is a perfect number. Prove that $$a^{\frac{n}{\mu}}> \frac{\mu}{2}$$ where $\mu$ denotes the number of distinct prime divisors of $a^n$
2015 ASDAN Math Tournament, 3
Let $f(x)$ be a polynomial of finite degree satisfying
$$(x+9)f(x+1)=(x+3)f(x+3)$$
for all real $x$. If $f(0)=1$, find the value of $f(1)$.
2022 Brazil National Olympiad, 2
Let $ABC$ be an acute triangle, with $AB<AC$. Let $K$ be the midpoint of the arch $BC$ that does not contain $A$ and let $P$ be the midpoint of $BC$. Let $I_B,I_C$ be the $B$-excenter and $C$-excenter of $ABC$, respectively. Let $Q$ be the reflection of $K$ with respect to $A$. Prove that the points $P,Q,I_B,I_C$ are concyclic.
2006 Iran MO (2nd round), 3
Some books are placed on each other. Someone first, reverses the upper book. Then he reverses the $2$ upper books. Then he reverses the $3$ upper books and continues like this. After he reversed all the books, he starts this operation from the first. Prove that after finite number of movements, the books become exactly like their initial configuration.
2013 AMC 12/AHSME, 20
For $135^\circ < x < 180^\circ$, points $P=(\cos x, \cos^2 x), Q=(\cot x, \cot^2 x), R=(\sin x, \sin^2 x)$ and $S =(\tan x, \tan^2 x)$ are the vertices of a trapezoid. What is $\sin(2x)$?
$ \textbf{(A)}\ 2-2\sqrt{2}\qquad\textbf{(B)}\ 3\sqrt{3}-6\qquad\textbf{(C)}\ 3\sqrt{2}-5\qquad\textbf{(D)}\ -\frac{3}{4}\qquad\textbf{(E)}\ 1-\sqrt{3} $