This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1971 IMO Longlists, 45

A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$

IV Soros Olympiad 1997 - 98 (Russia), 11.5

Let $M$ be the point of intersection of the diagonals of the inscribed quadrilateral $ABCD$, and let the angle $\angle AMB$ be an acute angle. On the side $BC$, as a base, an isosceles triangle $BCK$ is constructed in the direction external to the quadrilateral such that $\angle KBC+\angle AMB= 90^o$. Prove that line $KM$ is perpendicular to $AD$.

2017 Balkan MO Shortlist, A1

Problem Shortlist BMO 2017 Let $ a $,$ b$,$ c$, be positive real numbers such that $abc= 1 $. Prove that $$\frac{1}{a^{5}+b^{5}+c^{2}}+\frac{1}{b^{5}+c^{5}+a^{2}}+\frac{1}{c^{5}+b^{5}+b^{2}}\leq 1 . $$

2014 JHMMC 7 Contest, 2

Tags: quick nt
2. What’s the closest number to $169$ that’s divisible by $9$?

2009 Princeton University Math Competition, 3

Find the sum of all prime numbers $p$ which satisfy \[p = a^4 + b^4 + c^4 - 3\] for some primes (not necessarily distinct) $a$, $b$ and $c$.

1987 Greece Junior Math Olympiad, 1

We color all the points of the plane with two colors. Prove that there are (at least) two points of the plane having the same color and at distance $1$ among them.

2005 Germany Team Selection Test, 3

For an ${n\times n}$ matrix $A$, let $X_{i}$ be the set of entries in row $i$, and $Y_{j}$ the set of entries in column $j$, ${1\leq i,j\leq n}$. We say that $A$ is [i]golden[/i] if ${X_{1},\dots ,X_{n},Y_{1},\dots ,Y_{n}}$ are distinct sets. Find the least integer $n$ such that there exists a ${2004\times 2004}$ golden matrix with entries in the set ${\{1,2,\dots ,n\}}$.

1998 Greece National Olympiad, 4

Let a function $g:\mathbb{N}_0\to\mathbb{N}_0$ satisfy $g(0)=0$ and $g(n)=n-g(g(n-1))$ for all $n\ge 1$. Prove that: a) $g(k)\ge g(k-1)$ for any positive integer $k$. b) There is no $k$ such that $g(k-1)=g(k)=g(k+1)$.

1997 Singapore Senior Math Olympiad, 2

Figure shows a semicircle with diameter $AD$. The chords $AC$ and $BD$ meet at $P$. $Q$ is the foot of the perpendicular from $P$ to $AD$. find $\angle BCQ$ in terms of $\theta$ and $\phi$ . [img]https://cdn.artofproblemsolving.com/attachments/a/2/2781050e842b2dd01b72d246187f4ed434ff69.png[/img]

2024 Indonesia TST, A

Given real numbers $x,y,z$ which satisfies $$|x+y+z|+|xy+yz+zx|+|xyz| \le 1$$ Show that $max\{ |x|,|y|,|z|\} \le 1$.

2021 Iran MO (2nd Round), 1

There are two distinct Points $A$ and $B$ on a line. We color a point $P$ on segment $AB$, distinct from $A,B$ and midpoint of segment $AB$ to red. In each move , we can reflect one of the red point wrt $A$ or $B$ and color the midpoint of the resulting point and the point we reflected from ( which is one of $A$ or $B$ ) to red. For example , if we choose $P$ and the reflection of $P$ wrt to $A$ is $P'$ , then midpoint of $AP'$ would be red. Is it possible to make the midpoint of $AB$ red after a finite number of moves?

2011 Romania Team Selection Test, 2

Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?

1997 Moscow Mathematical Olympiad, 2

Tags:
To get to the Stromboli Volcano from the observatory, one has to take a road and a passway, each taking $4$ hours. There are two craters on the top. The first crater erupts for $1$ hour, stays silent for $17$ hours, then repeats the cycle. The second crater erupts for $1$ hour, stays silent for $9$ hours, erupts for $1$ hour, stays silent for $17$ hours, and then repeats the cycle. During the eruption of the first crater, it is dangerous to take both the passway and the road, but the second crater is smaller, so it is still safe to take the road. At noon, scout Vanya saw both craters erupting simultaneously. Will it ever be possible for him to mount the top of the volcano without risking his life?

2020 CCA Math Bonanza, L2.2

Tags:
A rectangular box with side lengths $1$, $2$, and $16$ is cut into two congruent smaller boxes with integer side lengths. Compute the square of the largest possible length of the space diagonal of one of the smaller boxes. [i]2020 CCA Math Bonanza Lightning Round #2.2[/i]

1978 IMO Longlists, 35

Tags: algebra , function
A sequence $(a_n)_0^N$ of real numbers is called concave if $2a_n\ge a_{n-1} + a_{n+1}$ for all integers $n, 1 \le n \le N - 1$. $(a)$ Prove that there exists a constant $C >0$ such that \[\left(\displaystyle\sum_{n=0}^{N}a_n\right)^2\ge C(N - 1)\displaystyle\sum_{n=0}^{N}a_n^2\:\:\:\:\:(1)\] for all concave positive sequences $(a_n)^N_0$ $(b)$ Prove that $(1)$ holds with $C = \frac{3}{4}$ and that this constant is best possible.

2017 India IMO Training Camp, 1

Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints: [list] [*]each cell contains a distinct divisor; [*]the sums of all rows are equal; and [*]the sums of all columns are equal. [/list]

1986 AMC 8, 4

Tags:
The product $ (1.8)(40.3\plus{}.07)$ is closest to \[ \textbf{(A)}\ 7 \qquad \textbf{(B)}\ 42 \qquad \textbf{(C)}\ 74 \qquad \textbf{(D)}\ 84 \qquad \textbf{(E)}\ 737 \]

1975 Miklós Schweitzer, 7

Let $ a<a'<b<b'$ be real numbers and let the real function $ f$ be continuous on the interval $ [a,b']$ and differentiable in its interior. Prove that there exist $ c \in (a,b), c'\in (a',b')$ such that \[ f(b)\minus{}f(a)\equal{}f'(c)(b\minus{}a),\] \[ f(b')\minus{}f(a')\equal{}f'(c')(b'\minus{}a'),\] and $ c<c'$. [i]B. Szokefalvi Nagy[/i]

CVM 2020, Problem 1+

Given the number $\overline{a_1a_2\cdots a_n}$ such that $$\overline{a_n\cdots a_2a_1}\mid \overline{a_1a_2\cdots a_n}$$Then show $(\overline{a_1a_2\cdots a_n})(\overline{a_n\cdots a_2a_1})$ is a perfect square. [i]Proposed by Ezra Guerrero, Francisco Morazan[/i]

2025 China Team Selection Test, 17

Prove: there exist integer $x_1,x_2,\cdots x_{10},y_1,y_2,\cdots y_{10}$ satisfying the following conditions: $(1)$ $|x_i|,|y_i|\le 10^{10} $ for all $1\le i \le 10$ $(2)$ Define the set \[S = \left\{ \left( \sum_{i=1}^{10} a_i x_i, \sum_{i=1}^{10} a_i y_i \right) : a_1, a_2, \cdots, a_{10} \in \{0, 1\} \right\},\] then \(|S| = 1024\),and any rectangular strip of width 1 covers at most two points of S.

2014 IMO Shortlist, C2

We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ . [i]Proposed by Abbas Mehrabian, Iran[/i]

2021 Balkan MO, 1

Tags:
Let $ABC$ be a triangle with $AB<AC$. Let $\omega$ be a circle passing through $B, C$ and assume that $A$ is inside $\omega$. Suppose $X, Y$ lie on $\omega$ such that $\angle BXA=\angle AYC$. Suppose also that $X$ and $C$ lie on opposite sides of the line $AB$ and that $Y$ and $B$ lie on opposite sides of the line $AC$. Show that, as $X, Y$ vary on $\omega$, the line $XY$ passes through a fixed point. [i]Proposed by Aaron Thomas, UK[/i]

1992 Flanders Math Olympiad, 2

Tags: probability
It has come to a policeman's ears that 5 gangsters (all of different height) are meeting, one of them is the clan leader, he's the tallest of the 5. He knows the members will leave the building one by one, with a 10-minute break between them, and too bad for him Belgium has not enough policemen to follow all gangsters, so he's on his own to spot the clanleader, and he can only follow one member. So he decides to let go the first 2 people, and then follow the first one that is taller than those two. What's the chance he actually catches the clan leader like this?

2024 ELMO Shortlist, G7

Let $ABC$ be a triangle. Construct rectangles $BA_1A_2C$, $CB_1B_2A$, and $AC_1C_2B$ outside $ABC$ such that $\angle BCA_1=\angle CAB_1=\angle ABC_1$. Let $A_1B_2$ and $A_2C_1$ intersect at $A'$ and define $B',C'$ similarly. Prove that line $AA'$ bisects $B'C'$. [i]Linus Tang[/i]

2004 Dutch Mathematical Olympiad, 2

Two circles $A$ and $B$, both with radius $1$, touch each other externally. Four circles $P, Q, R$ and $S$, all four with the same radius $r$, lie such that $P$ externally touches on $A, B, Q$ and $S$, $Q$ externally touches on $P, B$ and $R$, $R$ externally touches on $A, B, Q$ and $S$, $S$ externally touches on $P, A$ and $R$. Calculate the length of $r.$ [asy] unitsize(0.3 cm); pair A, B, P, Q, R, S; real r = (3 + sqrt(17))/2; A = (-1,0); B = (1,0); P = intersectionpoint(arc(A,r + 1,0,180), arc(B,r + 1,0,180)); R = -P; Q = (r + 2,0); S = (-r - 2,0); draw(Circle(A,1)); draw(Circle(B,1)); draw(Circle(P,r)); draw(Circle(Q,r)); draw(Circle(R,r)); draw(Circle(S,r)); label("$A$", A); label("$B$", B); label("$P$", P); label("$Q$", Q); label("$R$", R); label("$S$", S); [/asy]