This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 IberoAmerican Olympiad For University Students, 4

A variable tangent $t$ to the circle $C_1$, of radius $r_1$, intersects the circle $C_2$, of radius $r_2$ in $A$ and $B$. The tangents to $C_2$ through $A$ and $B$ intersect in $P$. Find, as a function of $r_1$ and $r_2$, the distance between the centers of $C_1$ and $C_2$ such that the locus of $P$ when $t$ varies is contained in an equilateral hyperbola. [b]Note[/b]: A hyperbola is said to be [i]equilateral[/i] if its asymptotes are perpendicular.

2016 Baltic Way, 15

The Baltic Sea has $2016$ harbours. There are two-way ferry connections between some of them. It is impossible to make a sequence of direct voyages $C_1 - C_2 - ... - C_{1062}$ where all the harbours $C_1, . . . , C_{1062}$ are distinct. Prove that there exist two disjoint sets $A$ and $B$ of $477$ harbours each, such that there is no harbour in $A$ with a direct ferry connection to a harbour in $B.$

2014 Contests, 1

Let $ABC$ an acute triangle and $\Gamma$ its circumcircle. The bisector of $BAC$ intersects $\Gamma$ at $M\neq A$. A line $r$ parallel to $BC$ intersects $AC$ at $X$ and $AB$ at $Y$. Also, $MX$ and $MY$ intersect $\Gamma$ again at $S$ and $T$, respectively. If $XY$ and $ST$ intersect at $P$, prove that $PA$ is tangent to $\Gamma$.

2017 Czech-Polish-Slovak Match, 1

Let ${ABC}$ be a triangle. Line [i]l[/i] is parallel to ${BC}$ and it respectively intersects side ${AB}$ at point ${D}$, side ${AC}$ at point ${E}$, and the circumcircle of the triangle ${ABC}$ at points ${F}$ and ${G}$, where points ${F,D,E,G}$ lie in this order on [i]l[/i]. The circumcircles of triangles ${FEB}$ and ${DGC}$ intersect at points ${P}$ and ${Q}$. Prove that points ${A, P,Q}$ are collinear. (Slovakia)

2020 LMT Fall, A18

Tags:
Let $f$ of degree at most 13 such that $f(k) = 13^k$ for $0 \leq k \leq 13$. Compute the last three digits of $f(14)$. [i]Proposed by Kaylee Ji[/i]

2018 Romania National Olympiad, 4

For any $k \in \mathbb{Z},$ define $$F_k=X^4+2(1-k)X^2+(1+k)^2.$$ Find all values $k \in \mathbb{Z}$ such that $F_k$ is irreducible over $\mathbb{Z}$ and reducible over $\mathbb{Z}_p,$ for any prime $p.$ [i]Marius Vladoiu[/i]

2002 Stanford Mathematics Tournament, 5

Tags:
Solve for $a, b, c$ given that $a \le b \le c$, and $a+b+c=-1$ $ab+bc+ac=-4$ $abc=-2$

1998 French Mathematical Olympiad, Problem 2

Tags: algebra , sequence
Let $(u_n)$ be a sequence of real numbers which satisfies $$u_{n+2}=|u_{n+1}|-u_n\qquad\text{for all }n\in\mathbb N.$$Prove that there exists a positive integer $p$ such that $u_n=u_{n+p}$ holds for all $n\in\mathbb N$.

1970 AMC 12/AHSME, 29

Tags:
It is now between $10:00$ and $11:00$ o'clock, and six minutes form now, the minute hand of the watch will be exactly opposite the place where the hour hand was three minutes ago. What is the exact time now? $\textbf{(A) }10:05\dfrac{5}{11}\qquad\textbf{(B) }10:07\dfrac{1}{2}\qquad\textbf{(C) }10:10\qquad\textbf{(D) }10:15\qquad$ $\textbf{(E) }10:17\dfrac{1}{2}$

1995 Irish Math Olympiad, 2

Determine all integers $ a$ for which the equation $ x^2\plus{}axy\plus{}y^2\equal{}1$ has infinitely many distinct integer solutions $ x,y$.

2010 Regional Competition For Advanced Students, 3

Let $\triangle ABC$ be a triangle and let $D$ be a point on side $\overline{BC}$. Let $U$ and $V$ be the circumcenters of triangles $\triangle ABD$ and $\triangle ADC$, respectively. Show, that $\triangle ABC$ and $\triangle AUV$ are similar. [i](41th Austrian Mathematical Olympiad, regional competition, problem 3)[/i]

LMT Theme Rounds, 15

Tags:
A round robin tournament is held with $2016$ participants. Each player plays each other player once and exactly one game results in a tie. Let $W$ be the sum of the squares of each team's win total and let $L$ be the sum of the squares of each team's loss total. Find the maximum possible value of $W-L$. [i]Proposed by Matthew Weiss

2009 Baltic Way, 18

Let $n>2$ be an integer. In a country there are $n$ cities and every two of them are connected by a direct road. Each road is assigned an integer from the set $\{1, 2,\ldots ,m\}$ (different roads may be assigned the same number). The [i]priority[/i] of a city is the sum of the numbers assigned to roads which lead to it. Find the smallest $m$ for which it is possible that all cities have a different priority.

2022 Benelux, 3

Tags: geometry
Let $ABC$ be a scalene acute triangle. Let $B_1$ be the point on ray $[AC$ such that $|AB_1|=|BB_1|$. Let $C_1$ be the point on ray $[AB$ such that $|AC_1|=|CC_1|$. Let $B_2$ and $C_2$ be the points on line $BC$ such that $|AB_2|=|CB_2|$ and $|BC_2|=|AC_2|$. Prove that $B_1$, $C_1$, $B_2$, $C_2$ are concyclic.

2017 Sharygin Geometry Olympiad, 4

Tags: geometry
Given triangle $ABC$ and its incircle $\omega$ prove you can use just a ruler and drawing at most 8 lines to construct points$A',B',C'$ on $\omega$ such that $A,B',C'$ and $B,C',A'$ and $C,A',B'$ are collinear.

2012 AMC 12/AHSME, 19

A unit cube has vertices $P_1, P_2, P_3, P_4, P_1', P_2', P_3'$, and $P_4'$. Vertices $P_2, P_3$, and $P_4$ are adjacent to $P_1$, and for $1\leq i\leq 4$, vertices $P_i$ and $P_i'$ are opposite to each other. A regular octahedron has one vertex in each of the segments $P_1P_2, P_1P_3, P_1P_4, P_1'P_2', P_1'P_3'$, and $P_1'P_4'$. What is the octahedron's side length? [asy] import three; size(7.5cm); triple eye = (-4, -8, 3); currentprojection = perspective(eye); triple[] P = {(1, -1, -1), (-1, -1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, -1)}; // P[0] = P[4] for convenience triple[] Pp = {-P[0], -P[1], -P[2], -P[3], -P[4]}; // draw octahedron triple pt(int k){ return (3*P[k] + P[1])/4; } triple ptp(int k){ return (3*Pp[k] + Pp[1])/4; } draw(pt(2)--pt(3)--pt(4)--cycle, gray(0.6)); draw(ptp(2)--pt(3)--ptp(4)--cycle, gray(0.6)); draw(ptp(2)--pt(4), gray(0.6)); draw(pt(2)--ptp(4), gray(0.6)); draw(pt(4)--ptp(3)--pt(2), gray(0.6) + linetype("4 4")); draw(ptp(4)--ptp(3)--ptp(2), gray(0.6) + linetype("4 4")); // draw cube for(int i = 0; i < 4; ++i){ draw(P[1]--P[i]); draw(Pp[1]--Pp[i]); for(int j = 0; j < 4; ++j){ if(i == 1 || j == 1 || i == j) continue; draw(P[i]--Pp[j]); draw(Pp[i]--P[j]); } dot(P[i]); dot(Pp[i]); dot(pt(i)); dot(ptp(i)); } label("$P_1$", P[1], dir(P[1])); label("$P_2$", P[2], dir(P[2])); label("$P_3$", P[3], dir(-45)); label("$P_4$", P[4], dir(P[4])); label("$P'_1$", Pp[1], dir(Pp[1])); label("$P'_2$", Pp[2], dir(Pp[2])); label("$P'_3$", Pp[3], dir(-100)); label("$P'_4$", Pp[4], dir(Pp[4])); [/asy] $ \textbf{(A)}\ \frac{3\sqrt{2}}{4}\qquad\textbf{(B)}\ \frac{7\sqrt{6}}{16}\qquad\textbf{(C)}\ \frac{\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \frac{\sqrt{6}}{2} $

2013 IFYM, Sozopol, 2

Find the perimeter of the base of a regular triangular pyramid with volume 99 and apothem 6.

2004 Thailand Mathematical Olympiad, 2

Let $a$ and $b$ be real numbers such that $$\begin{cases} a^6 - 3a^2b^4 = 3 \\ b^6 - 3a^4b^2 = 3\sqrt2.\end{cases}$$ What is the value of $a^4 + b^4$ ?

2017 ELMO Shortlist, 3

Call the ordered pair of distinct circles $(\omega, \gamma)$ scribable if there exists a triangle with circumcircle $\omega$ and incircle $\gamma$. Prove that among $n$ distinct circles there are at most $(n/2)^2$ scribable pairs. [i]Proposed by Daniel Liu

2022 Chile National Olympiad, 5

Is it possible to divide a polygon with $21$ sides into $2022$ triangles in such a way that among all the vertices there are not three collinear?

2012 AMC 12/AHSME, 17

Square $PQRS$ lies in the first quadrant. Points $(3,0), (5,0), (7,0),$ and $(13,0)$ lie on lines $SP, RQ, PQ$, and $SR$, respectively. What is the sum of the coordinates of the center of the square $PQRS$? $ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 6.2\qquad\textbf{(C)}\ 6.4\qquad\textbf{(D)}\ 6.6\qquad\textbf{(E)}\ 6.8 $

1966 IMO Longlists, 33

Given two internally tangent circles; in the bigger one we inscribe an equilateral triangle. From each of the vertices of this triangle, we draw a tangent to the smaller circle. Prove that the length of one of these tangents equals the sum of the lengths of the two other tangents.

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

2020 USMCA, 20

Tags:
Yu Semo and Yu Sejmo have created sequences of symbols $\mathcal{U} = (\text{U}_1, \ldots, \text{U}_6)$ and $\mathcal{J} = (\text{J}_1, \ldots, \text{J}_6)$. These sequences satisfy the following properties. [list] [*] Each of the twelve symbols must be $\Sigma$, $\#$, $\triangle$, or $\mathbb{Z}$. [*] In each of the sets $\{\text{U}_1, \text{U}_2, \text{U}_4, \text{U}_5\}$, $\{\text{J}_1, \text{J}_2, \text{J}_4, \text{J}_5\}$, $\{\text{U}_1, \text{U}_2, \text{U}_3\}$, $\{\text{U}_4, \text{U}_5, \text{U}_6\}$, $\{\text{J}_1, \text{J}_2, \text{J}_3\}$, $\{\text{J}_4, \text{J}_5, \text{J}_6\}$, no two symbols may be the same. [*] If integers $d \in \{0, 1\}$ and $i, j \in \{1, 2, 3\}$ satisfy $\text{U}_{i + 3d} = \text{J}_{j + 3d}$, then $i < j$. [/list] How many possible values are there for the pair $(\mathcal{U}, \mathcal{J})$?

Novosibirsk Oral Geo Oly VIII, 2016.2

Tags: angle , geometry
Bisector of one angle of triangle $ABC$ is equal to the bisector of its external angle at the same vertex (see figure). Find the difference between the other two angles of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/c/3/d2efeb65544c45a15acccab8db05c8314eb5f2.png[/img]