This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

Kvant 2020, M2631

Tags: geometry
There is a convex quadrangle $ABCD$ such that no three of its sides can form a triangle. Prove that: [list=a] [*]one of its angles is not greater than $60^\circ{}$; [*]one of its angles is at least $120^\circ$. [/list] [i]Maxim Didin[/i]

2019 Online Math Open Problems, 15

Tags:
Let $A$,$B$,$C$, and $D$ be points in the plane with $AB=AC=BC=BD=CD=36$ and such that $A \neq D$. Point $K$ lies on segment $AC$ such that $AK=2KC$. Point $M$ lies on segment $AB$, and point $N$ lies on line $AC$, such that $D$, $M$, and $N$ are collinear. Let lines $CM$ and $BN$ intersect at $P$. Then the maximum possible length of segment $KP$ can be expressed in the form $m+\sqrt{n}$ for positive integers $m$ and $n$. Compute $100m+n$. [i]Proposed by James Lin[/i]

2015 May Olympiad, 4

We say that a number is [i]superstitious [/i] when it is equal to $13$ times the sum of its digits . Find all superstitious numbers.

LMT Speed Rounds, 2011.15

Tags:
Given that $20N^2$ is a divisor of $11!,$ what is the greatest possible integer value of $N?$

2022 Bulgarian Spring Math Competition, Problem 11.4

Let $n \geq 2$ be a positive integer. The set $M$ consists of $2n^2-3n+2$ positive rational numbers. Prove that there exists a subset $A$ of $M$ with $n$ elements with the following property: $\forall$ $2 \leq k \leq n$ the sum of any $k$ (not necessarily distinct) numbers from $A$ is not in $A$.

2019 Thailand TSTST, 1

Find all primes $p$ such that $(p-3)^p+p^2$ is a perfect square.

2009 Indonesia TST, 1

Let $ ABC$ be a triangle. A circle $ P$ is internally tangent to the circumcircle of triangle $ ABC$ at $ A$ and tangent to $ BC$ at $ D$. Let $ AD$ meets the circumcircle of $ ABC$ agin at $ Q$. Let $ O$ be the circumcenter of triangle $ ABC$. If the line $ AO$ bisects $ \angle DAC$, prove that the circle centered at $ Q$ passing through $ B$, circle $ P$, and the perpendicular line of $ AD$ from $ B$, are all concurrent.

1992 Czech And Slovak Olympiad IIIA, 6

Let $ABC$ be an acute triangle. The altitude from $B$ meets the circle with diameter $AC$ at points $P,Q$, and the altitude from $C$ meets the circle with diameter $AB$ at $M,N$. Prove that the points $M,N,P,Q$ lie on a circle.

1993 AMC 12/AHSME, 22

Tags:
Twenty cubical blocks are arranged as shown. First, $10$ are arranged in a triangular pattern; then a layer of $6$, arranged in a triangular pattern, is centered on the $10$; then a layer of $3$, arranged in a triangular pattern, is centered on the $6$; and finally one block is centered on top of the third layer. The blocks in the bottom layer are numbered $1$ through $10$ in some order. Each block in layers $2, 3$ and $4$ is assigned the number which is the sum of the numbers assigned to the three blocks on which it rests. Find the smallest possible number which could be assigned to the top block. [asy] size((400)); draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0), linewidth(1)); draw((5,0)--(10,0)--(15,0)--(20,0)--(20,5)--(15,5)--(10,5)--(5,5)--(6,7)--(11,7)--(16,7)--(21,7)--(21,2)--(20,0), linewidth(1)); draw((10,0)--(10,5)--(11,7), linewidth(1)); draw((15,0)--(15,5)--(16,7), linewidth(1)); draw((20,0)--(20,5)--(21,7), linewidth(1)); draw((0,5)--(1,7)--(6,7), linewidth(1)); draw((3.5,7)--(4.5,9)--(9.5,9)--(14.5,9)--(19.5,9)--(18.5,7)--(19.5,9)--(19.5,7), linewidth(1)); draw((8.5,7)--(9.5,9), linewidth(1)); draw((13.5,7)--(14.5,9), linewidth(1)); draw((7,9)--(8,11)--(13,11)--(18,11)--(17,9)--(18,11)--(18,9), linewidth(1)); draw((12,9)--(13,11), linewidth(1)); draw((10.5,11)--(11.5,13)--(16.5,13)--(16.5,11)--(16.5,13)--(15.5,11), linewidth(1)); draw((25,0)--(30,0)--(30,5)--(25,5)--(25,0), dashed); draw((30,0)--(35,0)--(40,0)--(45,0)--(45,5)--(40,5)--(35,5)--(30,5)--(31,7)--(36,7)--(41,7)--(46,7)--(46,2)--(45,0), dashed); draw((35,0)--(35,5)--(36,7), dashed); draw((40,0)--(40,5)--(41,7), dashed); draw((45,0)--(45,5)--(46,7), dashed); draw((25,5)--(26,7)--(31,7), dashed); draw((28.5,7)--(29.5,9)--(34.5,9)--(39.5,9)--(44.5,9)--(43.5,7)--(44.5,9)--(44.5,7), dashed); draw((33.5,7)--(34.5,9), dashed); draw((38.5,7)--(39.5,9), dashed); draw((32,9)--(33,11)--(38,11)--(43,11)--(42,9)--(43,11)--(43,9), dashed); draw((37,9)--(38,11), dashed); draw((35.5,11)--(36.5,13)--(41.5,13)--(41.5,11)--(41.5,13)--(40.5,11), dashed); draw((50,0)--(55,0)--(55,5)--(50,5)--(50,0), dashed); draw((55,0)--(60,0)--(65,0)--(70,0)--(70,5)--(65,5)--(60,5)--(55,5)--(56,7)--(61,7)--(66,7)--(71,7)--(71,2)--(70,0), dashed); draw((60,0)--(60,5)--(61,7), dashed); draw((65,0)--(65,5)--(66,7), dashed); draw((70,0)--(70,5)--(71,7), dashed); draw((50,5)--(51,7)--(56,7), dashed); draw((53.5,7)--(54.5,9)--(59.5,9)--(64.5,9)--(69.5,9)--(68.5,7)--(69.5,9)--(69.5,7), dashed); draw((58.5,7)--(59.5,9), dashed); draw((63.5,7)--(64.5,9), dashed); draw((57,9)--(58,11)--(63,11)--(68,11)--(67,9)--(68,11)--(68,9), dashed); draw((62,9)--(63,11), dashed); draw((60.5,11)--(61.5,13)--(66.5,13)--(66.5,11)--(66.5,13)--(65.5,11), dashed); draw((75,0)--(80,0)--(80,5)--(75,5)--(75,0), dashed); draw((80,0)--(85,0)--(90,0)--(95,0)--(95,5)--(90,5)--(85,5)--(80,5)--(81,7)--(86,7)--(91,7)--(96,7)--(96,2)--(95,0), dashed); draw((85,0)--(85,5)--(86,7), dashed); draw((90,0)--(90,5)--(91,7), dashed); draw((95,0)--(95,5)--(96,7), dashed); draw((75,5)--(76,7)--(81,7), dashed); draw((78.5,7)--(79.5,9)--(84.5,9)--(89.5,9)--(94.5,9)--(93.5,7)--(94.5,9)--(94.5,7), dashed); draw((83.5,7)--(84.5,9), dashed); draw((88.5,7)--(89.5,9), dashed); draw((82,9)--(83,11)--(88,11)--(93,11)--(92,9)--(93,11)--(93,9), dashed); draw((87,9)--(88,11), dashed); draw((85.5,11)--(86.5,13)--(91.5,13)--(91.5,11)--(91.5,13)--(90.5,11), dashed); draw((28,6)--(33,6)--(38,6)--(43,6)--(43,11)--(38,11)--(33,11)--(28,11)--(28,6), linewidth(1)); draw((28,11)--(29,13)--(34,13)--(39,13)--(44,13)--(43,11)--(44,13)--(44,8)--(43,6), linewidth(1)); draw((33,6)--(33,11)--(34,13)--(39,13)--(38,11)--(38,6), linewidth(1)); draw((31,13)--(32,15)--(37,15)--(36,13)--(37,15)--(42,15)--(41,13)--(42,15)--(42,13), linewidth(1)); draw((34.5,15)--(35.5,17)--(40.5,17)--(39.5,15)--(40.5,17)--(40.5,15), linewidth(1)); draw((53,6)--(58,6)--(63,6)--(68,6)--(68,11)--(63,11)--(58,11)--(53,11)--(53,6), dashed); draw((53,11)--(54,13)--(59,13)--(64,13)--(69,13)--(68,11)--(69,13)--(69,8)--(68,6), dashed); draw((58,6)--(58,11)--(59,13)--(64,13)--(63,11)--(63,6), dashed); draw((56,13)--(57,15)--(62,15)--(61,13)--(62,15)--(67,15)--(66,13)--(67,15)--(67,13), dashed); draw((59.5,15)--(60.5,17)--(65.5,17)--(64.5,15)--(65.5,17)--(65.5,15), dashed); draw((78,6)--(83,6)--(88,6)--(93,6)--(93,11)--(88,11)--(83,11)--(78,11)--(78,6), dashed); draw((78,11)--(79,13)--(84,13)--(89,13)--(94,13)--(93,11)--(94,13)--(94,8)--(93,6), dashed); draw((83,6)--(83,11)--(84,13)--(89,13)--(88,11)--(88,6), dashed); draw((81,13)--(82,15)--(87,15)--(86,13)--(87,15)--(92,15)--(91,13)--(92,15)--(92,13), dashed); draw((84.5,15)--(85.5,17)--(90.5,17)--(89.5,15)--(90.5,17)--(90.5,15), dashed); draw((56,12)--(61,12)--(66,12)--(66,17)--(61,17)--(56,17)--(56,12), linewidth(1)); draw((61,12)--(61,17)--(62,19)--(57,19)--(56,17)--(57,19)--(67,19)--(66,17)--(67,19)--(67,14)--(66,12), linewidth(1)); draw((59.5,19)--(60.5,21)--(65.5,21)--(64.5,19)--(65.5,21)--(65.5,19), linewidth(1)); draw((81,12)--(86,12)--(91,12)--(91,17)--(86,17)--(81,17)--(81,12), dashed); draw((86,12)--(86,17)--(87,19)--(82,19)--(81,17)--(82,19)--(92,19)--(91,17)--(92,19)--(92,14)--(91,12), dashed); draw((84.5,19)--(85.5,21)--(90.5,21)--(89.5,19)--(90.5,21)--(90.5,19), dashed); draw((84,18)--(89,18)--(89,23)--(84,23)--(84,18)--(84,23)--(85,25)--(90,25)--(89,23)--(90,25)--(90,20)--(89,18), linewidth(1));[/asy] $ \textbf{(A)}\ 55 \qquad\textbf{(B)}\ 83 \qquad\textbf{(C)}\ 114 \qquad\textbf{(D)}\ 137 \qquad\textbf{(E)}\ 144 $

Durer Math Competition CD Finals - geometry, 2012.D5

The points of a circle of unit radius are colored in two colors. Prove that $3$ points of the same color can be chosen such that the area of the triangle they define is at least $\frac{9}{10}$.

1998 Romania National Olympiad, 1

We consider the nonzero matrices $A_0, A_1, \ldots, A_n \in \mathcal{M}_2(\mathbb{R}),$ $n \ge 2,$ with the properties: $A_0 \neq aI_2$ for any $a \in \mathbb{R}$ and $A_0A_k=A_kA_0$ for $k= \overline{1,n}.$ Prove that a) $\det \left(\sum\limits_{k=1}^n A_k^2 \right) \ge 0$; b) If $\det \left(\sum\limits_{k=1}^n A_k^2 \right) = 0$ and $A_2 \ne aA_1$ for any $a \in \mathbb{R},$ then $\sum\limits_{k=1}^n A_k^2=O_2.$

1992 Tournament Of Towns, (357) 6

Consider a polyhedron having $100$ edges. (a) Find the maximal possible number of its edges which can be intersected by a plane (not containing any vertices of the polyhedron) if the polyhedron is convex. (b) Prove that for a non-convex polyhedron this number i. can be as great as $96$, ii. cannot be as great as $100$. (A Andjans, Riga

2023 Azerbaijan IMO TST, 5

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

2024 Sharygin Geometry Olympiad, 8.8

Two polygons are cut from the cardboard. Is it possible that for any disposition of these polygons on the plane they have either common inner points or only a finite number of common points on the boundary?

2011 Pre-Preparation Course Examination, 1

We have some cards that have the same look, but at the back of some of them is written $0$ and for the others $1$.(We can't see the back of a card so we can't know what's the number on it's back). we have a machine. we give it two cards and it gives us the product of the numbers on the back of the cards. if we have $m$ cards with $0$ on their back and $n$ cards with $1$ on their back, at least how many times we must use the machine to be sure that we get the number $1$? (15 points)

2000 All-Russian Olympiad Regional Round, 10.7

In a convex quadrilateral $ABCD$ we draw the bisectors $\ell_a$, $\ell_b$, $\ell_c$, $\ell_d$ of external angles $A$, $B$, $C$, $D$ respectively. The intersection points of the lines $\ell_a$ and $\ell_b$, $\ell_b$ and $\ell_c$, $\ell_c$ and $\ell_d$, $\ell_d$ and $\ell_a$ are designated by $K$, $L$, $M$, $N$. It is known that $3$ perpendiculars drawn from $K$ on $AB$, from $L$ om $BC$, from $M$ on $CD$ intersect at one point. Prove that the quadrilateral $ABCD$ is cyclic.

2017 CMIMC Number Theory, 3

For how many triples of positive integers $(a,b,c)$ with $1\leq a,b,c\leq 5$ is the quantity \[(a+b)(a+c)(b+c)\] not divisible by $4$?

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 3

Let $a$ be a positive real number. Evaluate $I=\int_0^{+\infty} \frac{\sin x\cos x}{x(x^2+a^2)}dx.$

2014 Peru Iberoamerican Team Selection Test, P6

Determine the largest positive integer $k$ for which there exists a simple graph $G$ of $2014$ vertices that simultaneously satisfies the following conditions: $a)$ $G$ does not contain triangles $b)$ For each $i$ between $1$ and $k$, inclusive, at least one vertex of $G$ has degree $i$ $c)$ No vertex of $G$ has a degree greater than $k$

2022 CMIMC, 1.6

Find the probability such that when a polynomial in $\mathbb Z_{2027}[x]$ having degree at most $2026$ is chosen uniformly at random, $$x^{2027}-x | P^{k}(x) - x \iff 2021 | k $$ (note that $2027$ is prime). Here $P^k(x)$ denotes $P$ composed with itself $k$ times. [i]Proposed by Grant Yu[/i]

1990 Flanders Math Olympiad, 4

Let $f:\mathbb{R}^+_0 \rightarrow \mathbb{R}^+_0$ be a strictly decreasing function. (a) Be $a_n$ a sequence of strictly positive reals so that $\forall k \in \mathbb{N}_0:k\cdot f(a_k)\geq (k+1)\cdot f(a_{k+1})$ Prove that $a_n$ is ascending, that $\displaystyle\lim_{k\rightarrow +\infty} f(a_k)$ = 0and that $\displaystyle\lim_{k\rightarrow +\infty} a_k =+\infty$ (b) Prove that there exist such a sequence ($a_n$) in $\mathbb{R}^+_0$ if you know $\displaystyle\lim_{x\rightarrow +\infty} f(x)=0$.

2013 Princeton University Math Competition, 7

A tetrahedron $ABCD$ satisfies $AB=6$, $CD=8$, and $BC=DA=5$. Let $V$ be the maximum value of $ABCD$ possible. If we can write $V^4=2^n3^m$ for some integers $m$ and $n$, find $mn$.

2014 IMS, 10

Let $V$ be a $n-$dimensional vector space over a field $F$ with a basis $\{e_1,e_2, \cdots ,e_n\}$.Prove that for any $m-$dimensional linear subspace $W$ of $V$, the number of elements of the set $W \cap P$ is less than or equal to $2^m$ where $P=\{\lambda_1e_1 + \lambda_2e_2 + \cdots + \lambda_ne_n : \lambda_i=0,1\}$.

2017 China Northern MO, 8

On Qingqing Grassland, there are 7 sheep numberd $1,2,3,4,5,6,7$ and 2017 wolves numberd $1,2,\cdots,2017$. We have such strange rules: (1) Define $P(n)$: the number of prime numbers that are smaller than $n$. Only when $P(i)\equiv j\pmod7$, wolf $i$ may eat sheep $j$ (he can also choose not to eat the sheep). (2) If wolf $i$ eat sheep $j$, he will immediately turn into sheep $j$. (3) If a wolf can make sure not to be eaten, he really wants to experience life as a sheep. Assume that all wolves are very smart, then how many wolves will remain in the end?

2019 Korea USCM, 2

Matrices $A$, $B$ are given as follows. \[A=\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 12\end{pmatrix}\] Find volume of $V=\{\mathbf{x}\in\mathbb{R}^3 : \mathbf{x}\cdot A\mathbf{x} \leq 1 < \mathbf{x}\cdot B\mathbf{x} \}$.