This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Kazakhstan National Olympiad, 3

Let $ABCD$ be convex quadrilateral, such that exist $M,N$ inside $ABCD$ for which $\angle NAD= \angle MAB; \angle NBC= \angle MBA; \angle MCB=\angle NCD; \angle NDA=\angle MDC$ Prove, that $S_{ABM}+S_{ABN}+S_{CDM}+S_{CDN}=S_{BCM}+S_{BCN}+S_{ADM}+S_{ADN}$, where $S_{XYZ}$-area of triangle $XYZ$

Geometry Mathley 2011-12, 12.2

Let $K$ be the midpoint of a fixed line segment $AB$, two circles $(O)$ and $(O')$ with variable radius each such that the straight line $OO'$ is throughK and $K$ is inside $(O)$, the two circles meet at $A$ and $C$, center $O'$ is on the circumference of $(O)$ and $O$ is interior to $(O')$. Assume that $M$ is the midpoint of $AC, H$ the projection of $C$ onto the perpendicular bisector of segment $AB$. Let $I$ be a variable point on the arc $AC$ of circle $(O')$ that is inside $(O), I$ is not on the line $OO'$ . Let $J$ be the reflection of $I$ about $O$. The tangent of $(O')$ at $I$ meets $AC$ at $N$. Circle $(O'JN)$ meets $IJ$ at $P$, distinct from $J$, circle $(OMP)$ intersects $MI$ at $Q$ distinct from $M$. Prove that (a) the intersection of $PQ$ and $O'I$ is on the circumference of $(O)$. (b) there exist a location of $I$ such that the line segment $AI$ meets $(O)$ at $R$ and the straight line $BI$ meets $(O')$ at $S$, then the lines $AS$ and $KR$ meets at a point on the circumference of $(O)$. (c) the intersection $G$ of lines $KC$ and $HB$ moves on a fixed line. Lê Phúc Lữ

2022-23 IOQM India, 19

Consider a string of $n$ $1's$. We wish to place some $+$ signs in between so that the sum is $1000$. For instance, if $n=190$, one may put $+$ signs so as to get $11$ ninety times and $1$ ten times , and get the sum $1000$. If $a$ is the number of positive integers $n$ for which it is possible to place $+$ signs so as to get the sum $1000$, then find the sum of digits of $a$.

1995 AMC 8, 2

Tags:
Jose is $4$ years younger than Zack. Zack is $3$ years older than Inez. Inez is $15$ years old. How old is Jose? $\text{(A)}\ 8 \qquad \text{(B)}\ 11 \qquad \text{(C)}\ 14 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 22$

1969 AMC 12/AHSME, 7

Tags: quadratic
If the points $(1,y_1)$ and $(-1,y_2)$ lie on the graph of $y=ax^2+bx+c$, and $y_1-y_2=-6$, then $b$ equals: $\textbf{(A) }-3\qquad \textbf{(B) }0\qquad \textbf{(C) }3\qquad \textbf{(D) }\sqrt{ac}\qquad \textbf{(E) }\dfrac{a+c}2$

1988 Bundeswettbewerb Mathematik, 4

Starting with four given integers $a_1, b_1, c_1, d_1$ is defined recursively for all positive integers $n$: $$a_{n+1} := |a_n - b_n|, b_{n+1} := |b_n - c_n|, c_{n+1} := |c_n - d_n|, d_{n+1} := |d_n - a_n|.$$ Prove that there is a natural number $k$ such that all terms $a_k, b_k, c_k, d_k$ take the value zero.

2010 Switzerland - Final Round, 9

Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$. Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.

1992 Putnam, B1

Let $S$ be a set of $n$ distinct real numbers. Let $A_{S}$ be the set of numbers that occur as averages of two distinct elements of $S$. For a given $n \geq 2$, what is the smallest possible number of elements in $A_{S}$?

1989 IMO Shortlist, 6

For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P,\] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.

1991 AMC 12/AHSME, 26

Tags:
An $n$-digit positive integer is [i]cute[/i] if its $n$ digits are an arrangement of the set $\{1,2,\ldots,n\}$ and its first $k$ digits form an integer that is divisible by $k$, for $k = 1,2,\ldots,n$. For example 321 is a cute 3-digit integer because 1 divides 3, 2 divides 32, and 3 divides 321. How many cute 6-digit integers are there? $ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4 $

2010 Regional Olympiad of Mexico Northeast, 3

Tags: geometry , incenter
In triangle $ABC$, $\angle BAC= 60^o$. Angle bisector of $\angle ABC$ meets side $AC$ at $X$ and angle bisector of $\angle BCA$ meets side $AB$ at $Y$. Prove that if $I$ is the incenter of triangle $ABC$, then $IX=IY$.

2014 Contests, 1

$a_1,a_2,...,a_{2014}$ is a permutation of $1,2,3,...,2014$. What is the greatest number of perfect squares can have a set ${ a_1^2+a_2,a_2^2+a_3,a_3^2+a_4,...,a_{2013}^2+a_{2014},a_{2014}^2+a_1 }?$

1959 Putnam, B6

Let $\alpha$ and $\beta$ be irrational numbers with the property that $$\frac{1}{\alpha} +\frac{1}{\beta}=1$$ Let$\{a_n\}$ and $\{b_n\}$ be the sequences given by $a_n= \lfloor n\alpha \rfloor$ and $b_n= \lfloor n\beta \rfloor$ respectively. Prove that the sequences $\{ a_n\}$ and $\{ b_n \} $ has no term in common and cover all the natural numbers. I know this theorem from long ago, but forgot the proof of it. Can anybody help me with this?

2010 Contests, 3

Define the sequence $x_1, x_2, ...$ inductively by $x_1 = \sqrt{5}$ and $x_{n+1} = x_n^2 - 2$ for each $n \geq 1$. Compute $\lim_{n \to \infty} \frac{x_1 \cdot x_2 \cdot x_3 \cdot ... \cdot x_n}{x_{n+1}}$.

2018 BMT Spring, 3

Tags: geometry
If $A$ is the area of a triangle with perimeter $ 1$, what is the largest possible value of $A^2$?

2007 National Olympiad First Round, 2

What is the last three digits of base-4 representation of $10\cdot 3^{195}\cdot 49^{49}$? $ \textbf{(A)}\ 112 \qquad\textbf{(B)}\ 130 \qquad\textbf{(C)}\ 132 \qquad\textbf{(D)}\ 212 \qquad\textbf{(E)}\ 232 $

2018 Iranian Geometry Olympiad, 1

There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $XY$ . [img]https://2.bp.blogspot.com/-x7GQfMFHzAQ/W6K57utTEkI/AAAAAAAAJFQ/1-5WhhuerMEJwDnWB09sTemNLdJX7_OOQCK4BGAYYCw/s320/igo%2B2018%2Bintermediate%2Bp1.png[/img] Proposed by Hirad Aalipanah

2008 HMNT, 5

Joe has a triangle with area $\sqrt{3}.$ What's the smallest perimeter it could have?

2022 Taiwan TST Round 2, 4

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

2010 Saudi Arabia IMO TST, 2

Find all functions $f,g : N \to N$ such that for all $m ,n \in N$ the following relation holds: $$f(m ) - f(n) = (m - n)(g(m) + g(n))$$. Note: $N = \{0,1,2,...\}$

2016 AMC 10, 9

Tags:
A triangular array of $2016$ coins has $1$ coin in the first row, $2$ coins in the second row, $3$ coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$? $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

1991 IMTS, 5

The sides of $\triangle ABC$ measure 11,20, and 21 units. We fold it along $PQ,QR,RP$ where $P,Q,R$ are the midpoints of its sides until $A,B,C$ coincide. What is the volume of the resulting tetrahedron?

2022-2023 OMMC, 10

Tags:
Ryan uses $91$ puzzle pieces to make a rectangle. Each of them is identical to one of the tiles shown. Given that pieces can be flipped or rotated, find the number of pieces that are red in the puzzle. (He is not allowed to join two ``flat sides'' together.)

2013 National Chemistry Olympiad, 38

Tags:
In which pair of substances do the nitrogen atoms have the same oxidation state? $ \textbf{(A)}\ \ce{HNO3} \text{ and } \ce{ N2O5} \qquad\textbf{(B)}\ \ce{NO} \text{ and } \ce{HNO2} \qquad$ ${\textbf{(C)}\ \ce{N2} \text{ and } \ce{N2O} \qquad\textbf{(D)}}\ \ce{HNO2} \text{ and } \ce{HNO3} \qquad $

2014 ISI Entrance Examination, 6

Define $\mathcal{A}=\{(x,y)|x=u+v,y=v, u^2+v^2\le 1\}$. Find the length of the longest segment that is contained in $\mathcal{A}$.