Found problems: 85335
2015 District Olympiad, 1
[b]a)[/b] Show that the number $ \sqrt{9-\sqrt{77}}\cdot\sqrt {2}\cdot\left(\sqrt{11}-\sqrt{7}\right)\cdot\left( 9+\sqrt{77}\right) $ is natural.
[b]b)[/b] Consider two real numbers $ x,y $ such that $ xy=6 $ and $ x,y>2. $ Show that $ x+y<5. $
2014 India Regional Mathematical Olympiad, 5
Let $a,b,c$ be positive real numbers such that
\[ \cfrac{1}{1+a}+\cfrac{1}{1+b}+\cfrac{1}{1+c}\le 1. \]
Prove that $(1+a^2)(1+b^2)(1+c^2)\ge 125$. When does equality hold?
1990 IMO Longlists, 81
A circle of radius $\rho$ is tangent to the sides $AB$ and $AC$ of the triangle $ABC$, and its center $K$ is at a distance $p$ from $BC$.
[i](a)[/i] Prove that $a(p - \rho) = 2s(r - \rho)$, where $r$ is the inradius and $2s$ the perimeter of $ABC$.
[i](b)[/i] Prove that if the circle intersect $BC$ at $D$ and $E$, then
\[DE=\frac{4\sqrt{rr_1(\rho-r)(r_1-\rho)}}{r_1-r}\]
where $r_1$ is the exradius corresponding to the vertex $A.$
2020 OMpD, 1
Let $a, b, c$ be real numbers such that $a + b + c = 0$. Given that $a^3 + b^3 + c^3 \neq 0$, $a^2 + b^2 + c^2 \neq 0$, determine all possible values for:
$$\frac{a^5 + b^5 + c^5}{(a^3 + b^3 + c^3)(a^2 + b^2 + c^2)}$$
2016 Kyiv Mathematical Festival, P4
Let $H$ be the point of intersection of the altitudes $AD$ and $BE$ of acute triangle $ABC.$ The circles with diameters $AE$ and $BD$ touch at point $L$. Prove that $HL$ is the angle bisector of angle $\angle AHB.$
1967 IMO Longlists, 50
The function $\varphi(x,y,z)$ defined for all triples $(x,y,z)$ of real numbers, is such that there are two functions $f$ and $g$ defined for all pairs of real numbers, such that
\[\varphi(x,y,z) = f(x+y,z) = g(x,y+z)\]
for all real numbers $x,y$ and $z.$ Show that there is a function $h$ of one real variable, such that
\[\varphi(x,y,z) = h(x+y+z)\]
for all real numbers $x,y$ and $z.$
2016 Vietnam National Olympiad, 2
Given a triangle $ABC$ inscribed by circumcircle $(O)$. The angles at $B,C$ are acute angle. Let $M$ on the arc $BC$ that doesn't contain $A$ such that $AM$ is not perpendicular to $BC$. $AM$ meets the perpendicular bisector of $BC$ at $T$. The circumcircle $(AOT)$ meets $(O)$ at $N$ ($N\ne A$).
a) Prove that $\angle{BAM}=\angle{CAN}$.
b) Let $I$ be the incenter and $G$ be the foor of the angle bisector of $\angle{BAC}$. $AI,MI,NI$ intersect $(O)$ at $D,E,F$ respectively. Let ${P}=DF\cap AM, {Q}=DE\cap AN$. The circle passes through $P$ and touches $AD$ at $I$ meets $DF$ at $H$ ($H\ne D$).The circle passes through $Q$ and touches $AD$ at $I$ meets $DE$ at $K$ ($K\ne D$). Prove that the circumcircle $(GHK)$ touches $BC$.
2018 Thailand TST, 2
Call a rational number [i]short[/i] if it has finitely many digits in its decimal expansion. For a positive integer $m$, we say that a positive integer $t$ is $m-$[i]tastic[/i] if there exists a number $c\in \{1,2,3,\ldots ,2017\}$ such that $\dfrac{10^t-1}{c\cdot m}$ is short, and such that $\dfrac{10^k-1}{c\cdot m}$ is not short for any $1\le k<t$. Let $S(m)$ be the set of $m-$tastic numbers. Consider $S(m)$ for $m=1,2,\ldots{}.$ What is the maximum number of elements in $S(m)$?
2022 Sharygin Geometry Olympiad, 9
The sides $AB, BC, CD$ and $DA$ of quadrilateral $ABCD$ touch a circle with center $I$ at points $K, L, M$ and $N$ respectively. Let $P$ be an arbitrary point of line $AI$. Let $PK$ meet $BI$ at point $Q, QL$ meet $CI$ at point $R$, and $RM$ meet $DI$ at point $S$.
Prove that $P,N$ and $S$ are collinear.
2023 CCA Math Bonanza, TB2
How many ways are there to color a tetrahedron’s faces, edges, and vertices in red, green, and blue so that no face shares a color with any of its edges, and no edge shares a color with any of its endpoints? (Rotations and reflections are considered distinct.)
[i]Tiebreaker #2[/i]
2024 CMI B.Sc. Entrance Exam, 3
(a) FInd the number of complex roots of $Z^6 = Z + \bar{Z}$
(b) Find the number of complex solutions of $Z^n = Z + \bar{Z}$ for $n \in \mathbb{Z}^+$
2024 Romania National Olympiad, 4
Let $\mathbb{L}$ be a finite field with $q$ elements. Prove that:
a) If $q \equiv 3 \pmod 4$ and $n \ge 2$ is a positive integer divisible by $q-1,$ then $x^n=(x^2+1)^n$ for all $x \in \mathbb{L}^{\times}.$
b) If there exists a positive integer $n \ge 2$ such that $x^n=(x^2+1)^n$ for all $x \in \mathbb{L}^{\times},$ then $q \equiv 3 \pmod 4$ and $q-1$ divides $n.$
2021 Dutch IMO TST, 1
The sequence of positive integers $a_0, a_1, a_2, . . .$ is defined by $a_0 = 3$ and $$a_{n+1} - a_n = n(a_n - 1)$$ for all $n \ge 0$. Determine all integers $m \ge 2$ for which $gcd (m, a_n) = 1$ for all $n \ge 0$.
2018-IMOC, N3
Find all pairs of positive integers $(x,y)$ so that
$$\frac{(x^2-x+1)(y^2-y+1)}{xy}\in\mathbb N.$$
2002 Czech-Polish-Slovak Match, 3
Let $S = \{1, 2, \cdots , n\}, n \in N$. Find the number of functions $f : S \to S$ with the property that $x + f(f(f(f(x)))) = n + 1$ for all $x \in S$?
1998 South africa National Olympiad, 3
$A,\ B,\ C,\ D,\ E$ and $F$ lie (in that order) on the circumference of a circle. The chords $AD,\ BE$ and $CF$ are concurrent. $P,\ Q$ and $R$ are the midpoints of $AD,\ BE$ and $CF$ respectively. Two further chords $AG \parallel BE$ and $AH \parallel CF$ are drawn. Show that $PQR$ is similar to $DGH$.
1966 Putnam, B2
Prove that among any ten consecutive integers at least one is relatively prime to each of the others.
2021 Purple Comet Problems, 3
Let $M$ and $m$ be, respectively, the greatest and the least ten-digit numbers that are rearrangements of the digits $0$ through $9$ such that no two adjacent digits are consecutive. Find $M - m$.
2011 IFYM, Sozopol, 6
In a group of $n$ people each one has an Easter Egg. They exchange their eggs in the following way: On each exchange two people exchange the eggs they currently have. Each two exchange eggs between themselves at least once. After a certain amount of such exchanges it turned out that each one of the $n$ people had the same egg he had from the beginning. Determine the least amount of exchanges needed, if:
a) $n=5$;
b) $n=6$.
1982 Polish MO Finals, 2
In a cyclic quadrilateral $ABCD$ the line passing through the midpoint of $AB$ and the intersection point of the diagonals is perpendicular to $CD$. Prove that either the sides $AB$ and $CD$ are parallel or the diagonals are perpendicular.
1999 Abels Math Contest (Norwegian MO), 1b
If $a,b,c,d,e$ are real numbers, prove the inequality $a^2 +b^2 +c^2 +d^2+e^2 \ge a(b+c+d+e)$.
2025 Kosovo National Mathematical Olympiad`, P4
Let $D$ be a point on the side $AC$ of triangle $\triangle ABC$ such that $AB=AD=DC$ and let $E$ be a point on the side $BC$ such that $BE=2CE$. Prove that $\angle BDE = 90 ^{\circ}$.
2023 Malaysia IMONST 2, 2
Ivan bought $50$ cats consisting of five different breeds. He records the number of cats of each breed and after multiplying these five numbers he obtains the number $100000$. How many cats of each breed does he have?
1989 IMO Longlists, 24
Let $ a, b, c, d$ be positive integers such that $ ab \equal{} cd$ and $ a\plus{}b \equal{} c \minus{} d.$ Prove that there exists a right-angled triangle the measure of whose sides (in some unit) are integers and whose area measure is $ ab$ square units.
2025 International Zhautykov Olympiad, 1
Let $a, b$ be positive reals such that $a^3 + b^3 = ab + 1$. Prove that \[(a-b)^2 + a + b \geq 2\]