This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 CMIMC Algebra, 1

Tags: algebra
Misha has accepted a job in the mines and will produce one ore each day. At the market, he is able to buy or sell one ore for \$3, buy or sell bundles of three wheat for \$12 each, or $\textit{sell}$ one wheat for one ore. His ultimate goal is to build a city, which requires three ore and two wheat. How many dollars must Misha begin with in order to build a city after three days of working?

2014 ELMO Shortlist, 3

Let $a,b,c,d,e,f$ be positive real numbers. Given that $def+de+ef+fd=4$, show that \[ ((a+b)de+(b+c)ef+(c+a)fd)^2 \geq\ 12(abde+bcef+cafd). \][i]Proposed by Allen Liu[/i]

2012 Indonesia TST, 3

The [i]cross[/i] of a convex $n$-gon is the quadratic mean of the lengths between the possible pairs of vertices. For example, the cross of a $3 \times 4$ rectangle is $\sqrt{ \dfrac{3^2 + 3^2 + 4^2 + 4^2 + 5^2 + 5^2}{6} } = \dfrac{5}{3} \sqrt{6}$. Suppose $S$ is a dodecagon ($12$-gon) inscribed in a unit circle. Find the greatest possible cross of $S$.

2024 CCA Math Bonanza, TB4

Tags:
Equilateral triangle $A_1A_2A_3$ has side length $15$ and circumcenter $M$. Let $N$ be a point such that $\angle A_3MN = 72^{\circ}$ and $MN = 7$. The circle with diameter $MN$ intersects lines $MA_1$, $MA_2$, and $MA_3$ again at $B_1$, $B_2$, and $B_3$, respectively. The value of $NB_1^2+NB_2^2+NB_3^2$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [i]Tiebreaker #4[/i]

2006 Kyiv Mathematical Festival, 5

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $a, b, c, d$ be positive integers and $p$ be prime number such that $a^2+b^2=p$ and $c^2+d^2$ is divisible by $p.$ Prove that there exist positive integers $e$ and $f$ such that $e^2+f^2=\frac{c^2+d^2}{p}.$

2025 NEPALTST, 1

Tags: geometry
Consider a triangle $\triangle ABC$ and some point $X$ on $BC$. The perpendicular from $X$ to $AB$ intersects the circumcircle of $\triangle AXC$ at $P$ and the perpendicular from $X$ to $AC$ intersects the circumcircle of $\triangle AXB$ at $Q$. Show that the line $PQ$ does not depend on the choice of $X$. [i](Shining Sun, USA)[/i]

2023 May Olympiad, 2

Let $a, b, c, d$, and $e$ be positive integers such that $a\le b\le c\le d\le e$ and that $a+b+c+d+e=1002$. a) Determine the largest possible value of $a+c+e$. b) Determine the lowest possible value of $a+c+e$.

2021 Philippine MO, 7

Let $a, b, c,$ and $d$ be real numbers such that $a \geq b \geq c \geq d$ and $$a+b+c+d = 13$$ $$a^2+b^2+c^2+d^2=43.$$ Show that $ab \geq 3 + cd$.

1969 Dutch Mathematical Olympiad, 5

a) Prove that for $n = 2,3,4,...$ holds: $$\sin a + \sin 2a + ...+ \sin (n-1)a=\frac{\cos a \left(\frac{a}{2}\right) - \cos \left(n-\frac{1}{2}\right) a}{2 \sin \left(\frac{a}{2}\right)}$$ b) A point on the circumference of a wheel, which, remaining in a vertical plane, rolls along a horizontal path, describes, at one revolution of the wheel, a curve having a length equal to four times the diameter of the wheel. Prove this by first considering tilting a regular $n$-gon. [hide=original wording for part b]Een punt van de omtrek van een wiel dat, in een verticaal vlak blijvend, rolt over een horizontaal gedachte weg, beschrijft bij één omwenteling van het wiel een kromme die een lengte heeft die gelijk is aan viermaal de middellijn van het wiel. Bewijs dit door eerst een rondkantelende regelmatige n-hoek te beschouwen.[/hide]

2025 6th Memorial "Aleksandar Blazhevski-Cane", P6

There are $n \ge 7$ points in the plane, no $3$ of which are collinear. At least $7$ pairs of points are joined by line segments. For every aforementioned line segment $s$, let $t(s)$ be the number of triangles for which the segment $s$ is a side. Prove that there exist different line segments $s_1, s_2, s_3,$ and $s_4$ such that \[t(s_1) = t(s_2) = t(s_3) = t(s_4)\] holds. Proposed by [i]Viktor Simjanoski[/i]

2011 Iran MO (3rd Round), 5

Given triangle $ABC$, $D$ is the foot of the external angle bisector of $A$, $I$ its incenter and $I_a$ its $A$-excenter. Perpendicular from $I$ to $DI_a$ intersects the circumcircle of triangle in $A'$. Define $B'$ and $C'$ similarly. Prove that $AA',BB'$ and $CC'$ are concurrent. [i]proposed by Amirhossein Zabeti[/i]

2015 India IMO Training Camp, 2

Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$. [i]Proposed by Belgium[/i]

2002 AMC 12/AHSME, 18

Let $ C_1$ and $ C_2$ be circles defined by \[ (x \minus{} 10)^2 \plus{} y^2 \equal{} 36\]and \[ (x \plus{} 15)^2 \plus{} y^2 \equal{} 81,\]respectively. What is the length of the shortest line segment $ \overline{PQ}$ that is tangent to $ C_1$ at $ P$ and to $ C_2$ at $ Q$? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 20 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24$

2019 Grand Duchy of Lithuania, 2

Every cell of a $20 \times 20$ table has to be coloured black or white (there are $2^{400}$ such colourings in total). Given any colouring $P$, we consider division of the table into rectangles with sides in the grid lines where no rectangle contains more than two black cells and where the number of rectangles containing at most one black cell is the least possible. We denote this smallest possible number of rectangles containing at most one black cell by $f(P)$. Determine the maximum value of $f(P)$ as $P$ ranges over all colourings.

1978 Miklós Schweitzer, 10

Let $ Y_n$ be a binomial random variable with parameters $ n$ and $ p$. Assume that a certain set $ H$ of positive integers has a density and that this density is equal to $ d$. Prove the following statements: (a) $ \lim _{n \rightarrow \infty}P(Y_n\in H)\equal{}d$ if $ H$ is an arithmetic progression. (b) The previous limit relation is not valid for arbitrary $ H$. (c) If $ H$ is such that $ P(Y_n \in H)$ is convergent, then the limit must be equal to $ d$. [i]L. Posa[/i]

2007 Harvard-MIT Mathematics Tournament, 1

Tags:
Define the sequence of positive integers $a_n$ recursively by $a_1=7$ and $a_n=7^{a_{n-1}}$ for all $n\geq 2$. Determine the last two digits of $a_{2007}$.

LMT Team Rounds 2021+, B14

In the expansion of $(2x +3y)^{20}$, find the number of coefficients divisible by $144$. [i]Proposed by Hannah Shen[/i]

2014 Contests, 2

There are cities in country, and some cities are connected by roads. Not more than $100$ roads go from every city. Set of roads is called as ideal if all roads in set have not common ends, and we can not add one more road in set without breaking this rule. Every day minister destroy one ideal set of roads. Prove, that he need not more than $199$ days to destroy all roads in country.

2020 Bosnia and Herzegovina Junior BMO TST, 2

A board $n \times n$ is divided into $n^2$ unit squares and a number is written in each unit square. Such a board is called [i] interesting[/i] if the following conditions hold: $\circ$ In all unit squares below the main diagonal, the number $0$ is written; $\circ$ Positive integers are written in all other unit squares. $\circ$ When we look at the sums in all $n$ rows, and the sums in all $n$ columns, those $2n$ numbers are actually the numbers $1,2,...,2n$ (not necessarily in that order). $a)$ Determine the largest number that can appear in a $6 \times 6$ [i]interesting[/i] board. $b)$ Prove that there is no [i]interesting[/i] board of dimensions $7\times 7$.

2001 239 Open Mathematical Olympiad, 4

Integers are placed on every cell of an infinite checkerboard. For each cell if it contains integer $a$ then the sum of the numbers in the cell under it and the cell right to it is $2a+1$. Prove that in every infinite diagonal row of direction [i] top-right down-left [/i] all numbers are different.

2019 Junior Balkan Team Selection Tests - Romania, 1

Let $n$ be a nonnegative integer and $M =\{n^3, n^3+1, n^3+2, ..., n^3+n\}$. Consider $A$ and $B$ two nonempty, disjoint subsets of $M$ such that the sum of elements of the set $A$ divides the sum of elements of the set $B$. Prove that the number of elements of the set $A$ divides the number of elements of the set $B$.

2001 Korea - Final Round, 1

Given an odd prime $p$, find all functions $f:Z \rightarrow Z$ satisfying the following two conditions: (i) $f(m)=f(n)$ for all $m,n \in Z$ such that $m\equiv n\pmod p$; (ii) $f(mn)=f(m)f(n)$ for all $m,n \in Z$.

Kvant 2022, M2729

Determine all positive integers $n{}$ and $m{}$ such that $m^n=n^{3m}$. [i]Proposed by I. Dorofeev[/i]

2005 Belarusian National Olympiad, 4

An $n \times n$ table is called good if one can paint its cells with three colors so that, for any two different rows and two different columns, the four cells at their intersections are not all of the same color. a)Show, that exists good $9 \times 9$ good table. b)Prove, that fif $n \times n$ table is good, then $n<11$

1962 All Russian Mathematical Olympiad, 015

Tags: algebra
Given positive numbers $a_1,a_2,...,a_{99},a_{100}$. It is known, that $$a_1>a_0, a_2=3a_1-2a_0, a_3=3a_2-2a_1, ..., a_{100}=3a_{99}-2a_{98}$$ Prove that $$a_{100}>2^{99}.$$