This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2025 CMIMC Algebra/NT, 10

Let $a_n$ be a recursively defined sequence with $a_0=2024$ and $a_{n+1}=a_n^3+5a_n^2+10a_n+6$ for $n\ge 0.$ Determine the value of $$\sum_{n=0}^{\infty} \frac{2^n(a_n+1)}{a_n^2+3a_n+4}.$$

2008 Iran MO (3rd Round), 5

Tags: euler , geometry
Let $ D,E,F$ be tangency point of incircle of triangle $ ABC$ with sides $ BC,AC,AB$. $ DE$ and $ DF$ intersect the line from $ A$ parallel to $ BC$ at $ K$ and $ L$. Prove that the Euler line of triangle $ DKL$ passes through Feuerbach point of triangle $ ABC$.

2020 BMT Fall, 9

For any point $(x, y)$ with $0\le x < 1$ and $0 \le y < 1$, Jenny can perform a shuffle on that point, which takes the point to $(\{3x + y\} ,\{x + 2y\})$ where $\{a\}$ denotes the fractional or decimal part of $a$ (so for example,$\{\pi\} = \pi - 3 = 0.1415...$). How many points $p$ are there such that after $3$ shuffles on $p$, $p$ ends up in its original position?

1975 Czech and Slovak Olympiad III A, 5

Let a square $\mathbf P=P_1P_2P_3P_4$ be given in the plane. Determine the locus of all vertices $A$ of isosceles triangles $ABC,AB=BC$ such that the vertices $B,C$ are points of the square $\mathbf P.$

2006 IberoAmerican, 1

Find all pairs $(a,\, b)$ of positive integers such that $2a-1$ and $2b+1$ are coprime and $a+b$ divides $4ab+1.$

2010 China Girls Math Olympiad, 1

Tags: algebra , ratio
Let $n$ be an integer greater than two, and let $A_1,A_2, \cdots , A_{2n}$ be pairwise distinct subsets of $\{1, 2, ,n\}$. Determine the maximum value of \[\sum_{i=1}^{2n} \dfrac{|A_i \cap A_{i+1}|}{|A_i| \cdot |A_{i+1}|}\] Where $A_{2n+1}=A_1$ and $|X|$ denote the number of elements in $X.$

2005 CentroAmerican, 2

Show that the equation $a^{2}b^{2}+b^{2}c^{2}+3b^{2}-c^{2}-a^{2}=2005$ has no integer solutions. [i]Arnoldo Aguilar, El Salvador[/i]

2020 Israel Olympic Revenge, P4

Original post by shalomrav, but for some reason the mods locked the problem without any solves :noo: Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$. Let $F_A$ be the (associated with $\Omega$) Feuerbach point of the triangle formed by the tangents to $\Omega$ at $B,C,D$, that is, the point of tangency of $\Omega$ and the nine-point circle of that triangle. Define $F_B, F_C, F_D$ similarly. Let $A'$ be the intersection of the tangents to $\Omega$ at $A$ and $F_A$. Define $B', C', D'$ similarly. Prove that quadrilaterals $ABCD$ and $A'B'C'D'$ are similar

2013 China Team Selection Test, 1

The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.

2012 Balkan MO Shortlist, G5

Tags: geometry
$\boxed{\text{G5}}$ The incircle of a triangle $ABC$ touches its sides $BC$,$CA$,$AB$ at the points $A_1$,$B_1$,$C_1$.Let the projections of the orthocenter $H_1$ of the triangle $A_{1}B_{1}C_{1}$ to the lines $AA_1$ and $BC$ be $P$ and $Q$,respectively. Show that $PQ$ bisects the line segment $B_{1}C_{1}$

2002 China Team Selection Test, 3

Tags: algebra
Sequence $ \{ f_n(a) \}$ satisfies $ \displaystyle f_{n\plus{}1}(a) \equal{} 2 \minus{} \frac{a}{f_n(a)}$, $ f_1(a) \equal{} 2$, $ n\equal{}1,2, \cdots$. If there exists a natural number $ n$, such that $ f_{n\plus{}k}(a) \equal{} f_{k}(a), k\equal{}1,2, \cdots$, then we call the non-zero real $ a$ a $ \textbf{periodic point}$ of $ f_n(a)$. Prove that the sufficient and necessary condition for $ a$ being a $ \textbf{periodic point}$ of $ f_n(a)$ is $ p_n(a\minus{}1)\equal{}0$, where $ \displaystyle p_n(x)\equal{}\sum_{k\equal{}0}^{\left[ \frac{n\minus{}1}{2} \right]} (\minus{}1)^k C_n^{2k\plus{}1}x^k$, here we define $ \displaystyle \frac{a}{0}\equal{} \infty$ and $ \displaystyle \frac{a}{\infty} \equal{} 0$.

2015 Greece Junior Math Olympiad, 1

Tags: algebra
Find all values of the real parameter $a$, so that the equation $x^2+(a-2)x-(a-1)(2a-3)=0$ has two real roots, so that the one is the square of the other.

2019 Jozsef Wildt International Math Competition, W. 68

In all tetrahedron $ABCD$ holds [list=1] [*] $\displaystyle{\sum \limits_{cyc}\frac{h_a-r}{h_a+r}\geq \sum \limits_{cyc}\frac{h_a^t-r^t}{(h_a+r)^t}}$ [*] $\displaystyle{\sum \limits_{cyc}\frac{2r_a-r}{2r_a+r}\geq \sum \limits_{cyc}\frac{2r_a^t-r^t}{(2r_a+r)^t}}$ [/list] for all $t\in [0,1]$

2023 HMIC, P3

Triangle $ABC$ has incircle $\omega$ and $A$-excircle $\omega_A.$ Circle $\gamma_B$ passes through $B$ and is externally tangent to $\omega$ and $\omega_A.$ Circle $\gamma_C$ passes through $C$ and is externally tangent to $\omega$ and $\omega_A.$ If $\gamma_B$ intersects line $BC$ again at $D,$ and $\gamma_C$ intersects line $BC$ again at $E,$ prove that $BD=EC.$

2021 SYMO, Q1

For what positive integers $n\geq 4$ does there exist a set $S$ of $n$ points on the plane, not all collinear, such that for any three non-collinear points $A,B,C$ in $S$, either the incenter, $A$-excenter, $B$-excenter, or $C$-excenter of triangle $ABC$ is also contained in $S$?

1999 IMO Shortlist, 4

Denote by S the set of all primes such the decimal representation of $\frac{1}{p}$ has the fundamental period divisible by 3. For every $p \in S$ such that $\frac{1}{p}$ has the fundamental period $3r$ one may write \[\frac{1}{p}=0,a_{1}a_{2}\ldots a_{3r}a_{1}a_{2} \ldots a_{3r} \ldots , \] where $r=r(p)$; for every $p \in S$ and every integer $k \geq 1$ define $f(k,p)$ by \[ f(k,p)= a_{k}+a_{k+r(p)}+a_{k+2.r(p)}\] a) Prove that $S$ is infinite. b) Find the highest value of $f(k,p)$ for $k \geq 1$ and $p \in S$

2022 HMNT, 10

Compute the number of distinct pairs of the form \[(\text{first three digits of }x,\text{ first three digits of }x^4)\] over all integers $x>10^{10}$. For example, one such pair is $(100,100)$ when $x=10^{10^{10}}$.

2014 ISI Entrance Examination, 1

Suppose a class contains $100$ students. Let, for $1\le i\le 100$, the $i^{\text{th}}$ student have $a_i$ many friends. For $0\le j\le 99$ let us define $c_j$ to be the number of students who have strictly more than $j$ friends. Show that \begin{align*} & \sum_{i=1}^{100}a_i=\sum_{j=0}^{99}c_j \end{align*}

2008 SDMO (Middle School), 1

Tags:
Find all ordered pairs of integers $\left(m,n\right)$ such that $$\frac{1}{m}+\frac{1}{n}=\frac{1}{7}.$$

2024 AMC 10, 10

Tags:
Consider the following operation. Given a positive integer $n$, if $n$ is a multiple of $3$, then you replace $n$ by $\dfrac{n}3$. If $n$ is not a multiple of $3$, then you replace $n$ by $n + 10$. Then continue this process. For example, beginning with $n = 4$, this procedure gives $4 \to 14 \to 24 \to 8 \to 18 \to 6 \to 2 \to 12 \to \cdots$. Suppose you start with $n = 100$. What value results if you perform this operation exactly $100$ times? $\textbf{(A) }10\qquad\textbf{(B) }20\qquad\textbf{(C) }30\qquad\textbf{(D) }40\qquad\textbf{(E) }50$

2024 Bulgarian Spring Mathematical Competition, 10.1

The reals $x, y$ satisfy $x(x-6)\leq y(4-y)+7$. Find the minimal and maximal values of the expression $x+2y$.

1989 IMO Longlists, 36

Connecting the vertices of a regular $ n$-gon we obtain a closed (not necessarily convex) $ n$-gon. Show that if $ n$ is even, then there are two parallel segments among the connecting segments and if $ n$ is odd then there cannot be exactly two parallel segments.

2006 Romania Team Selection Test, 4

Let $ABC$ be an acute triangle with $AB \neq AC$. Let $D$ be the foot of the altitude from $A$ and $\omega$ the circumcircle of the triangle. Let $\omega_1$ be the circle tangent to $AD$, $BD$ and $\omega$. Let $\omega_2$ be the circle tangent to $AD$, $CD$ and $\omega$. Let $\ell$ be the interior common tangent to both $\omega_1$ and $\omega_2$, different from $AD$. Prove that $\ell$ passes through the midpoint of $BC$ if and only if $2BC = AB + AC$.

2002 Czech-Polish-Slovak Match, 2

A triangle $ABC$ has sides $BC = a, CA = b, AB = c$ with $a < b < c$ and area $S$. Determine the largest number $u$ and the least number $v$ such that, for every point $P$ inside $\triangle ABC$, the inequality $u \le PD + PE + PF \le v$ holds, where $D,E, F$ are the intersection points of $AP,BP,CP$ with the opposite sides.

1976 Swedish Mathematical Competition, 5

$f(x)$ is defined for $x \geq 0$ and has a continuous derivative. It satisfies $f(0)=1$, $f'(0)=0$ and $(1+f(x))f''(x)=1+x$. Show that $f$ is increasing and that $f(1) \leq 4/3$.