This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1977 IMO Longlists, 15

Let $n$ be an integer greater than $1$. In the Cartesian coordinate system we consider all squares with integer vertices $(x,y)$ such that $1\le x,y\le n$. Denote by $p_k\ (k=0,1,2,\ldots )$ the number of pairs of points that are vertices of exactly $k$ such squares. Prove that $\sum_k(k-1)p_k=0$.

2009 Jozsef Wildt International Math Competition, W. 20

Tags: trigonometry
If $x \in \mathbb{R}\backslash \left \{\frac{k\pi}{2}\ |\ k\in \mathbb{Z} \right \}$, then $$\left (\sum \limits_{0\leq j<k\leq n} \sin (2(j+k)x)\right )^2 + \left (\sum \limits_{0\leq j<k\leq n} \cos (2(j+k)x)\right )^2 = \frac{\sin ^2 nx \sin ^2 (n+1)x}{\sin ^2x \sin^22x}$$

2011 Kosovo National Mathematical Olympiad, 1

Tags: logarithm
Let $x = \left( 1 + \frac{1}{n}\right)^n$ and $y = \left( 1 + \frac{1}{n}\right)^{n+1}$ where $n \in \mathbb{N}$. Which one of the numbers $x^y$, $y^x$ is bigger ?

1985 IMO Longlists, 9

A polyhedron has $12$ faces and is such that: [b][i](i)[/i][/b] all faces are isosceles triangles, [b][i](ii)[/i][/b] all edges have length either $x$ or $y$, [b][i](iii)[/i][/b] at each vertex either $3$ or $6$ edges meet, and [b][i](iv)[/i][/b] all dihedral angles are equal. Find the ratio $x/y.$

2021 Hong Kong TST, 5

Let $ABCD$ be an isosceles trapezoid with base $BC$ and $AD$. Suppose $\angle BDC=10^{\circ}$ and $\angle BDA=70^{\circ}$. Show that $AD^2=BC(AD+AB)$.

2018 Hanoi Open Mathematics Competitions, 8

Tags: angle , square , geometry
Let $P$ be a point inside the square $ABCD$ such that $\angle PAC = \angle PCD = 17^o$ (see Figure 1). Calculate $\angle APB$? [img]https://cdn.artofproblemsolving.com/attachments/d/0/0b20ebee1fe28e9c5450d04685ac8537acda07.png[/img]

2009 Czech-Polish-Slovak Match, 4

Given a circle, let $AB$ be a chord that is not a diameter, and let $C$ be a point on the longer arc $AB$. Let $K$ and $L$ denote the reflections of $A$ and $B$, respectively, about lines $BC$ and $AC$, respectively. Prove that the distance between the midpoint of $AB$ and the midpoint of $KL$ is independent of the choice of $C$.

2014 Argentina National Olympiad Level 2, 3

Tags: geometry
Let $ABCD$ be a parallelogram with sides $AB=10$ and $BC=6$. The circles $\omega_1$ and $\omega_2$ pass through $B$ and have centers $A$ and $C$ respectively. An arbitrary circle with center $D$ intersects $\omega_1$ at points $P_1\neq Q_1$ and $\omega_2$ at points $P_2 \neq Q_2$. Calculate the ratio $\dfrac{P_1Q_1}{P_2Q_2}$.

2016 South East Mathematical Olympiad, 5

Let a constant $\alpha$ as $0<\alpha<1$, prove that: $(1)$ There exist a constant $C(\alpha)$ which is only depend on $\alpha$ such that for every $x\ge 0$, $\ln(1+x)\le C(\alpha)x^\alpha$. $(2)$ For every two complex numbers $z_1,z_2$, $|\ln|\frac{z_1}{z_2}||\le C(\alpha)\left(|\frac{z_1-z_2}{z_2}|^\alpha+|\frac{z_2-z_1}{z_1}|^\alpha\right)$.

2022 Azerbaijan BMO TST, N4*

A natural number $n$ is given. Determine all $(n - 1)$-tuples of nonnegative integers $a_1, a_2, ..., a_{n - 1}$ such that $$\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m$$ holds for all $m \in \mathbb{Z}$.

2010 Today's Calculation Of Integral, 594

In the $x$-$y$ plane, two variable points $P,\ Q$ stay in $P(2t,\ -2t^2+2t),\ Q(t+2,-3t+2)$ at the time $t$. Let denote $t_0$ as the time such that $\overline{PQ}=0$. When $t$ varies in the range of $0\leq t\leq t_0$, find the area of the region swept by the line segment $PQ$ in the $x$-$y$ plane.

1949 Kurschak Competition, 2

$P$ is a point on the base of an isosceles triangle. Lines parallel to the sides through $P$ meet the sides at $Q$ and $R$. Show that the reflection of $P$ in the line $QR$ lies on the circumcircle of the triangle.

2017 Romanian Master of Mathematics Shortlist, N1

For each positive integer $k$, let $S(k)$ the sum of digits of $k$ in decimal system. Show that there is an integer $k$, with no $9$ in it's decimal representation, such that: $$S(2^{24^{2017}}k)=S(k)$$

1988 AMC 8, 15

Tags:
The reciprocal of $ \left(\frac{1}{2}+\frac{1}{3}\right) $ is $ \text{(A)}\ \frac{1}{6}\qquad\text{(B)}\ \frac{2}{5}\qquad\text{(C)}\ \frac{6}{5}\qquad\text{(D)}\ \frac{5}{2}\qquad\text{(E)}\ 5 $

1988 IMO Longlists, 79

Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.

2011 N.N. Mihăileanu Individual, 3

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function having the property that $$ f(f(x))=f(x)-\frac{1}{4}x +1, $$ for all real numbers $ x. $ [b]a)[/b] Prove that $ f $ is increasing. [b]b)[/b] Show that the equation $ f(x)=ax $ has at least a real solution in $ x, $ for any real number $ a\ge 1. $ [b]c)[/b] Calculate $ \lim_{x\to\infty } \frac{f(x)}{x} $ supposing that it exists, it's finite, and that $ \lim_{x\to\infty } f(f(x))=\infty . $

2021 BMT, 7

Alice is counting up by fives, starting with the number $3$. Meanwhile, Bob is counting down by fours, starting with the number $2021$. How many numbers between $3$ and $2021$, inclusive, are counted by both Alice and Bob?

2008 Hanoi Open Mathematics Competitions, 6

Let $P(x)$ be a polynomial such that $P(x^2 - 1) = x^4 - 3x^2 + 3$. Find $P(x^2 + 1)$.

2005 Purple Comet Problems, 13

Tags:
Find $x$ such that \[\frac{\frac{5}{x-50}+ \frac{7}{x+25}}{\frac{2}{x-50}- \frac{3}{x+25}} = 17.\]

2008 Balkan MO Shortlist, G8

Let $P$ be a point in the interior of a triangle $ABC$ and let $d_a,d_b,d_c$ be its distances to $BC,CA,AB$ respectively. Prove that max $(AP, BP, CP) \ge \sqrt{d_a^2+d_b^2+d_c^2}$

2017 Czech And Slovak Olympiad III A, 5

Given is the acute triangle $ABC$ with the intersection of altitudes $H$. The angle bisector of angle $BHC$ intersects side $BC$ at point $D$. Mark $E$ and $F$ the symmetrics of the point $D$ wrt lines $AB$ and $AC$. Prove that the circle circumscribed around the triangle $AEF$ passes through the midpoint of the arc $BAC$

1990 IMO Longlists, 54

Tags: algebra , function
Let $M = \{1, 2, \ldots, n\}$ and $\phi : M \to M$ be a bijection. (i) Prove that there exist bijections $\phi_1, \phi_2 : M \to M$ such that $\phi_1 \cdot \phi_2 = \phi , \phi_1^2 =\phi_2^2=E$, where $E$ is the identity mapping. (ii) Prove that the conclusion in (i) is also true if $M$ is the set of all positive integers.

2021 CHMMC Winter (2021-22), 4

Show that for any three positive integers $a,m,n$ such that $m$ divides $n$, there exists an integer $k$ such that $gcd(a,m) = gcd(a+km,n)$ .

1972 IMO, 3

Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.

2015 NIMO Problems, 3

Tags: geometry
Let $O$, $A$, $B$, and $C$ be points in space such that $\angle AOB=60^{\circ}$, $\angle BOC=90^{\circ}$, and $\angle COA=120^{\circ}$. Let $\theta$ be the acute angle between planes $AOB$ and $AOC$. Given that $\cos^2\theta=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Michael Ren[/i]