Found problems: 85335
1979 Bundeswettbewerb Mathematik, 4
An infinite sequence $p_1, p_2, p_3, \ldots$ of natural numbers in the decimal system has the following property: For every $i \in \mathbb{N}$ the last digit of $p_{i+1}$ is different from $9$, and by omitting this digit one obtains number $p_i$. Prove that this sequence contains infinitely many composite numbers.
2009 Romanian Masters In Mathematics, 4
For a finite set $ X$ of positive integers, let $ \Sigma(X) \equal{} \sum_{x \in X} \arctan \frac{1}{x}.$ Given a finite set $ S$ of positive integers for which $ \Sigma(S) < \frac{\pi}{2},$ show that there exists at least one finite set $ T$ of positive integers for which $ S \subset T$ and $ \Sigma(S) \equal{} \frac{\pi}{2}.$
[i]Kevin Buzzard, United Kingdom[/i]
2005 Italy TST, 1
A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.
2007 Indonesia TST, 4
Given a collection of sets $X = \{A_1, A_2, ..., A_n\}$. A set $\{a_1, a_2, ..., a_n\}$ is called a single representation of $X$ if $a_i \in A_i$ for all i. Let $|S| = mn$, $S = A_1\cup A_2 \cup ... \cup A_n = B_1 \cup B_2 \cup ... \cup B_n$ with $|A_i| = |B_i| = m$ for all $i$. Prove that $S = C_1 \cup C_2 \cup ... \cup C_n$ where for every $i, C_i $ is a single represenation for $\{A_j\}_{j=1}^n $and $\{B_j\}_{j=1}^n$.
EMCC Guts Rounds, 2024
[u]Round 1[/u]
[b]p1.[/b] When Shiqiao sells a bale of kale, he makes $x$ dollars, where $$x =\frac{1 + 2 + 3 + 4 + 5 + 6 + 7 + 8}{3 + 4 + 5 + 6}.$$ Find $x$.
[b]p2.[/b] The fraction of Shiqiao’s kale that has gone rotten is equal to $$\sqrt{ \frac{100^2}{99^2} -\frac{100}{99}}.$$
Find the fraction of Shiqiao’s kale that has gone rotten.
[b]p3.[/b] Shiqiao is growing kale. Each day the number of kale plants doubles, but $4$ of his kale plants die afterwards. He starts with $6$ kale plants. Find the number of kale plants Shiqiao has after five days.
[u]Round 2[/u]
[b]p4.[/b] Today the high is $68$ degrees Fahrenheit. If $C$ is the temperature in Celsius, the temperature in Fahrenheit is equal to $1.8C + 32$. Find the high today in Celsius.
[b]p5.[/b] The internal angles in Evan’s triangle are all at most $68$ degrees. Find the minimum number of degrees an angle of Evan’s triangle could measure.
[b]p6.[/b] Evan’s room is at $68$ degrees Fahrenheit. His thermostat has two buttons, one to increase the temperature by one degree, and one to decrease the temperature by one degree. Find the number of combinations of $10$ button presses Evan can make so that the temperature of his room never drops below $67$ degrees or rises above $69$ degrees.
[u]Round 3[/u]
[b]p7.[/b] In a digital version of the SAT, there are four spaces provided for either a digit $(0-9)$, a fraction sign $(\/)$, or a decimal point $(.)$. The answer must be in simplest form and at most one space can be a non-digit character. Determine the largest fraction which, when expressed in its simplest form, fits within this space, but whose exact decimal representation does not.
[b]p8.[/b] Rounding Rox picks a real number $x$. When she rounds x to the nearest hundred, its value increases by $2.71828$. If she had instead rounded $x$ to the nearest hundredth, its value would have decreased by $y$. Find $y$.
[b]p9.[/b] Let $a$ and $b$ be real numbers satisfying the system of equations $$\begin{cases}
a + \lfloor b \rfloor = 2.14 \\
\lfloor a \rfloor + b = 2.72 \end{cases}$$ Determine $a + b$.
[u]Round 4[/u]
[b]p10.[/b] Carol and Lily are playing a game with two unfair coins, both of which have a $1/4$ chance of landing on heads. They flip both coins. If they both land on heads, Lily loses the game, and if they both land on tails, Carol loses the game. If they land on different sides, Carol and Lily flip the coins again. They repeat this until someone loses the game. Find the probability that Lily loses the game.
[b]p11.[/b] Dongchen is carving a circular coin design. He carves a regular pentagon of side length $1$ such that all five vertices of the pentagon are on the rim of the coin. He then carves a circle inside the pentagon so that the circle is tangent to all five sides of the pentagon. Find the area of the region between the smaller circle and the rim of the coin.
[b]p12.[/b] Anthony flips a fair coin six times. Find the probability that at some point he flips $2$ heads in a row.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3248731p29808147]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Malaysian IMO Training Camp, 1
A cyclic quadrilateral $ABCD$ has diameter $AC$ with circumcircle $\omega$. Let $K$ be the foot of the perpendicular from $C$ to $BD$, and the tangent to $\omega$ at $A$ meets $BD$ at $T$. Let the line $AK$ meets $\omega$ at $X$ and choose a point $Y$ on line $AK$ such that $\angle TYA=90^{\circ}$. Prove that $AY=KX$.
[i]Proposed by Anzo Teh Zhao Yang[/i]
2010 CIIM, Problem 6
A group is call locally cyclic if any finitely generated subgroup is cyclic. Prove that a locally cyclic group is isomorphic to one of its proper subgroups if and only if it's isomorphic to a proper subgroup of the rational numbers with the adition.
2011 NZMOC Camp Selection Problems, 5
Prove that for any three distinct positive real numbers $a, b$ and $c$: $$\frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a - b)^3 + (b - c)^3 + (c - a)^3}> 8abc.$$
1998 National Olympiad First Round, 35
What is the maximum number of subsets, having property that none of them is a subset of another, can a set with 10 elements have?
$\textbf{(A)}\ 126 \qquad\textbf{(B)}\ 210 \qquad\textbf{(C)}\ 252 \qquad\textbf{(D)}\ 420 \qquad\textbf{(E)}\ 1024$
2020 CCA Math Bonanza, I10
Annie takes a $6$ question test, with each question having two parts each worth $1$ point. On each [b]part[/b], she receives one of nine letter grades $\{\text{A,B,C,D,E,F,G,H,I}\}$ that correspond to a unique numerical score. For each [b]question[/b], she receives the sum of her numerical scores on both parts. She knows that $\text{A}$ corresponds to $1$, $\text{E}$ corresponds to $0.5$, and $\text{I}$ corresponds to $0$.
When she receives her test, she realizes that she got two of each of $\text{A}$, $\text{E}$, and $\text{I}$, and she is able to determine the numerical score corresponding to all $9$ markings. If $n$ is the number of ways she can receive letter grades, what is the exponent of $2$ in the prime factorization of $n$?
[i]2020 CCA Math Bonanza Individual Round #10[/i]
2007 Junior Macedonian Mathematical Olympiad, 4
The numbers $a_{1}, a_{2}, ..., a_{20}$ satisfy the following conditions:
$a_{1} \ge a_{2} \ge ... \ge a_{20} \ge 0$
$a_{1} + a_{2} = 20$
$a_{3} + a_{4} + ... + a_{20} \le 20$ .
What is maximum value of the expression:
$a_{1}^2 + a_{2}^2 + ... + a_{20}^2$ ?
For which values of $a_{1}, a_{2}, ..., a_{20}$ is the maximum value achieved?
1967 IMO Shortlist, 1
Determine all positive roots of the equation $ x^x = \frac{1}{\sqrt{2}}.$
1970 AMC 12/AHSME, 24
An equilateral triangle and a regular hexagon have equal perimeters. If the area of the triangle is $2$, then the area of the hexagon is
$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }6\qquad \textbf{(E) }12$
2021 Estonia Team Selection Test, 3
In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\]
(A disk is assumed to contain its boundary.)
1990 AIME Problems, 2
Find the value of $(52+6\sqrt{43})^{3/2}-(52-6\sqrt{43})^{3/2}$.
2000 Switzerland Team Selection Test, 10
At $n$ distinct points of a circular race course there are $n$ cars ready to start. Each car moves at a constant speed and covers the circle in an hour. On hearing the initial signal, each of them selects a direction and starts moving immediately. If two cars meet, both of them change directions and go on without loss of speed. Show that at a certain moment each car will be at its starting point.
2019 Switzerland Team Selection Test, 8
Let $k,n,r$ be positive integers and $r<n$. Quirin owns $kn+r$ black and $kn+r$ white socks. He want to clean his cloths closet such there does not exist $2n$ consecutive socks $n$ of which black and the other $n$ white. Prove that
he can clean his closet in the desired manner if and only if $r\geq k$ and $n>k+r$.
PEN H Problems, 86
A triangle with integer sides is called Heronian if its area is an integer. Does there exist a Heronian triangle whose sides are the arithmetic, geometric and harmonic means of two positive integers?
Kyiv City MO Juniors 2003+ geometry, 2003.9.4
The diagonals of a convex quadrilateral divide it into four triangles. The radii of the circles circumscribed around these triangles are equal. Can such a property have a quadrilateral other than:
a) parallelogram,
b) rhombus?
(Sharygin Igor)
2006 Junior Balkan Team Selection Tests - Moldova, 4
Let $n$ be a positive integer, $n\geq 4$. $n$ cards are arranged on a circle and the numbers $1$ or $-1$ are written on each of the cards. in a $question$ we may find out the product of the numbers on any $3$ cards. What is the minimum numbers if questions needed to find out the product of all $n$ numbers?
2014 JBMO Shortlist, 7
$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]
2018 USA Team Selection Test, 3
At a university dinner, there are 2017 mathematicians who each order two distinct entrées, with no two mathematicians ordering the same pair of entrées. The cost of each entrée is equal to the number of mathematicians who ordered it, and the university pays for each mathematician's less expensive entrée (ties broken arbitrarily). Over all possible sets of orders, what is the maximum total amount the university could have paid?
[i]Proposed by Evan Chen[/i]
1989 Greece National Olympiad, 2
On the plane we consider $70$ points $A_1,A_2,...,A_{70}$ with integer coodinates. Suppose each pooints has weight $1$ and the centers of gravity of the triangles $ A_1A_2A_3$, $A_2A_3A_4$, $..$., $A_{68}A_{69}A_{70}$, $A_{69}A_{70}A_{1}$, $A_{70}A_{1}A_{2}$ have integer coodinates. Prove that the centers of gravity of any triple $A_i,A_j,...,A_{k}$ has integer coodinates.
2019 Saint Petersburg Mathematical Olympiad, 4
A non-equilateral triangle $\triangle ABC$ of perimeter $12$ is inscribed in circle $\omega$ .Points $P$ and $Q$ are arc midpoints of arcs $ABC$ and $ACB$ , respectively. Tangent to $\omega$ at $A$ intersects line $PQ$ at $R$.
It turns out that the midpoint of segment $AR$ lies on line $BC$ . Find the length of the segment $BC$.
[i] (А. Кузнецов)[/i]
2020 CHMMC Winter (2020-21), 6
Suppose that
\[
\prod_{n=1}^{\infty}\left(\frac{1+i\cot\left(\frac{n\pi}{2n+1}\right)}{1-i\cot\left(\frac{n\pi}{2n+1}\right)}\right)^{\frac{1}{n}} = \left(\frac{p}{q}\right)^{i \pi},
\]
where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
[i]Note: for a complex number $z = re^{i \theta}$ for reals $r > 0, 0 \le \theta < 2\pi$, we define $z^{n} = r^{n} e^{i \theta n}$ for all positive reals $n$.[/i]