This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 IMO Shortlist, C7

Consider $2018$ pairwise crossing circles no three of which are concurrent. These circles subdivide the plane into regions bounded by circular $edges$ that meet at $vertices$. Notice that there are an even number of vertices on each circle. Given the circle, alternately colour the vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice- once for each of the two circle that cross at that point. If the two colours agree at a vertex, then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains at least $2061$ yellow points, then the vertices of some region are all yellow. Proposed by [i]India[/i]

2015 Junior Balkan Team Selection Tests - Romania, 1

Define the set $M_q=\{x \in \mathbb{Q} \mid x^3-2015x=q \}$ , where $q$ is an arbitrary rational number. [b]a)[/b] Show that there exists values for $q$ such that the set is null as well as values for which it has exactly one element. [b]b)[/b] Determine all the possible values for the cardinality of $M_q$

2011 Turkey MO (2nd round), 5

Let $M$ and $N$ be two regular polygonic area.Define $K(M,N)$ as the midpoints of segments $[AB]$ such that $A$ belong to $M$ and $B$ belong to $N$. Find all situations of $M$ and $N$ such that $K(M,N)$ is a regualr polygonic area too.

Kyiv City MO Seniors 2003+ geometry, 2020.10.5.1

Let $\Gamma$ be a semicircle with diameter $AB$. On this diameter is selected a point $C$, and on the semicircle are selected points $D$ and $E$ so that $E$ lies between $B$ and $D$. It turned out that $\angle ACD = \angle ECB$. The intersection point of the tangents to $\Gamma$ at points $D$ and $E$ is denoted by $F$. Prove that $\angle EFD=\angle ACD+ \angle ECB$.

2001 Bosnia and Herzegovina Team Selection Test, 5

Let $n$ be a positive integer, $n \geq 1$ and $x_1,x_2,...,x_n$ positive real numbers such that $x_1+x_2+...+x_n=1$. Does the following inequality hold $$\sum_{i=1}^{n} {\frac{x_i}{1-x_1\cdot...\cdot x_{i-1} \cdot x_{i+1} \cdot ... x_n}} \leq \frac{1}{1-\left(\frac{1}{n}\right)^{n-1}} $$

2022 Portugal MO, 2

Let $P$ be a point on a circle $C_1$ and let $C_2$ be a circle with center $P$ that intersects $C_1$ at two points Q and R. The circle $C_3$, with center $Q$ and which passes through $R$, intersects $C_2$ at another point S, as in figure. Shows that $QS$ is tangent to $C_1$. [img]https://cdn.artofproblemsolving.com/attachments/7/5/f48d414c68c33c4efaf4d6c8bebcf6f1fad4ba.png[/img]

PEN K Problems, 19

Find all functions $f: \mathbb{Q}^{+}\to \mathbb{Q}^{+}$ such that for all $x,y \in \mathbb{Q}$: \[f \left( x+\frac{y}{x}\right) =f(x)+\frac{f(y)}{f(x)}+2y, \; x,y \in \mathbb{Q}^{+}.\]

2023 Kyiv City MO Round 1, Problem 5

In a galaxy far, far away there are $225$ inhabited planets. Between some pairs of inhabited planets there is a bidirectional space connection, and it is possible to reach any planet from any other (possibly with several transfers). The [i]influence[/i] of a planet is the number of other planets with which this planet has a direct connection. It is known that if two planets are not connected by a direct space flight, they have different influences. What is the smallest number of connections possible under these conditions? [i]Proposed by Arsenii Nikolaev, Bogdan Rublov[/i]

2013 All-Russian Olympiad, 4

$N$ lines lie on a plane, no two of which are parallel and no three of which are concurrent. Prove that there exists a non-self-intersecting broken line $A_0A_1A_2A_3...A_N$ with $N$ parts, such that on each of the $N$ lines lies exactly one of the $N$ segments of the line.

2011 Brazil National Olympiad, 3

Prove that, for all convex pentagons $P_1 P_2 P_3 P_4 P_5$ with area 1, there are indices $i$ and $j$ (assume $P_7 = P_2$ and $P_6 = P_1$) such that: \[ \text{Area of} \ \triangle P_i P_{i+1} P_{i+2} \le \frac{5 - \sqrt 5}{10} \le \text{Area of} \ \triangle P_j P_{j+1} P_{j+2}\]

2023 IFYM, Sozopol, 4

Let $n$ be a natural number. The leader of the math team invites $n$ girls for winter training, and each leaves her two gloves in a common box upon entry. The mischievous little brother randomly pairs the gloves into pairs, where each pair consists of one left glove and one right glove. A pairing is called [i]weak[/i] if there is a set of $k < \frac{n}{2}$ pairs containing gloves of exactly $k$ girls. Find the probability that the pairing is not weak.

2025 China Team Selection Test, 20

Let \( n \) be an odd integer, \( m = \frac{n+1}{2} \). Consider \( 2m \) integers \( a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_m \) such that for any \( 1 \leq i < j \leq m \), \( a_i \not\equiv a_j \pmod{n} \) and \( b_i \not\equiv b_j \pmod{n} \). Prove that the number of \( k \in \{0, 1, \ldots, n-1\} \) for which satisfy \( a_i + b_j \equiv k \pmod{n} \) for some \( i \neq j \), $i, j \in \left \{ 1,2,\cdots,m \right \} $ is greater than \( n - \sqrt{n} - \frac{1}{2} \).

KoMaL A Problems 2018/2019, A. 741

Let $f$ be a function defined on the positive integers with $f(n) \ge 0$ and $f(n) \le f(n+1)$ for all $n$. Prove that if \[\sum_{n = 1}^{\infty} \frac{f(n)}{n^2}\] diverges, there exists a sequence $a_1, a_2, \dots$ such that the sequence $\tfrac{a_n}{n}$ hits every natural number, while \[a_{n+m} \le a_n + a_m + f(n+m)\] holds for every pair $n$, $m$.

2024 China National Olympiad, 4

Let $a_1, a_2, \ldots, a_{2023}$ be nonnegative real numbers such that $a_1 + a_2 + \ldots + a_{2023} = 100$. Let $A = \left \{ (i,j) \mid 1 \leqslant i \leqslant j \leqslant 2023, \, a_ia_j \geqslant 1 \right\}$. Prove that $|A| \leqslant 5050$ and determine when the equality holds. [i]Proposed by Yunhao Fu[/i]

2018 CMIMC CS, 4

Consider the grid of numbers shown below. 20 01 96 56 16 37 48 38 64 60 96 97 42 20 98 35 64 96 40 71 50 58 90 16 89 Among all paths that start on the top row, move only left, right, and down, and end on the bottom row, what is the minimum sum of their entries?

2021 USAMTS Problems, 4

Tags:
Let $ABC$ be a scalene triangle, and let $X, Y , Z$ be points on sides $BC, CA, AB,$ respectively. Let $I$ and $O$ denote the incenter and circumcenter, respectively, of triangle $ABC.$ Suppose that\[ \frac{BX-CX}{BA-CA}=\frac{CY-AY}{CB-AB} = \frac{AZ-BZ}{AC-BC}.\] Prove that there exists a point $P$ on line $IO$ such that $PX \perp BC$, $PY \perp CA$, and $PZ \perp AB.$

2018 Korea National Olympiad, 5

Let there be a convex quadrilateral $ABCD$. The angle bisector of $\angle A$ meets the angle bisector of $\angle B$, the angle bisector of $\angle D$ at $P, Q$ respectively. The angle bisector of $\angle C$ meets the angle bisector of $\angle D$, the angle bisector of $\angle B$ at $R, S$ respectively. $P, Q, R, S$ are all distinct points. $PR$ and $QS$ meets perpendicularly at point $Z$. Denote $l_A, l_B, l_C, l_D$ as the exterior angle bisectors of $\angle A, \angle B, \angle C, \angle D$. Denote $E = l_A \cap l_B$, $F= l_B \cap l_C$, $G = l_C \cap l_D$, and $H= l_D \cap l_A$. Let $K, L, M, N$ be the midpoints of $FG, GH, HE, EF$ respectively. Prove that the area of quadrilateral $KLMN$ is equal to $ZM \cdot ZK + ZL \cdot ZN$.

2017 Brazil National Olympiad, 1.

[b]1.[/b] For each real number $r$ between $0$ and $1$ we can represent $r$ as an infinite decimal $r = 0.r_1r_2r_3\dots$ with $0 \leq r_i \leq 9$. For example, $\frac{1}{4} = 0.25000\dots$, $\frac{1}{3} = 0.333\dots$ and $\frac{1}{\sqrt{2}} = 0.707106\dots$. a) Show that we can choose two rational numbers $p$ and $q$ between $0$ and $1$ such that, from their decimal representations $p = 0.p_1p_2p_3\dots$ and $q = 0.q_1q_2q_3\dots$, it's possible to construct an irrational number $\alpha = 0.a_1a_2a_3\dots$ such that, for each $i = 1, 2, 3, \dots$, we have $a_i = p_1$ or $a_1 = q_i$. b) Show that there's a rational number $s = 0.s_1s_2s_3\dots$ and an irrational number $\beta = 0.b_1b_2b_3\dots$ such that, for all $N \geq 2017$, the number of indexes $1 \leq i \leq N$ satisfying $s_i \neq b_i$ is less than or equal to $\frac{N}{2017}$.

2010 LMT, 31

Tags:
In how many ways can each of the integers $1$ through $11$ be assigned one of the letters $L, M,$ and $T$ such that consecutive multiples of $n,$ for any positive integer $n,$ are not assigned the same letter?

2020 Online Math Open Problems, 15

Tags:
Let $m$ and $n$ be positive integers such that $\gcd(m,n)=1$ and $$\sum_{k=0}^{2020} (-1)^k {{2020}\choose{k}} \cos(2020\cos^{-1}(\tfrac{k}{2020}))=\frac{m}{n}.$$ Suppose $n$ is written as the product of a collection of (not necessarily distinct) prime numbers. Compute the sum of the members of this collection. (For example, if it were true that $n=12=2\times 2\times 3$, then the answer would be $2+2+3=7$.) [i]Proposed by Ankit Bisain[/i]

2020 Ukrainian Geometry Olympiad - December, 3

Given convex $1000$-gon. Inside this polygon, $1020$ points are chosen so that no $3$ of the $2020$ points do not lie on one line. Polygon is cut into triangles so that these triangles have vertices only those specified $2020$ points and each of these points is the vertex of at least one of cutting triangles. How many such triangles were formed?

2025 Bangladesh Mathematical Olympiad, P7

Yamin and Tamim are playing a game with subsets of $\{1, 2, \ldots, n\}$ where $n \geq 3$. [list] [*] Tamim starts the game with the empty set. [*] On Yamin's turn, he adds a proper non-empty subset of $\{1, 2, \ldots, n\}$ to his collection $F$ of blocked sets. [*] On Tamim's turn, he adds or removes a positive integer less than or equal to $n$ to or from their set but Tamim can never add or remove an element so that his set becomes one of the blocked sets in $F$. [/list] Tamim wins if he can make his set to be $\{1, 2, \ldots, n\}$. Yamin wins if he can stop Tamim from doing so. Yamin goes first and they alternate making their moves. Does Tamim have a winning strategy? [i]Proposed by Ahmed Ittihad Hasib[/i]

2004 China Team Selection Test, 3

Tags: geometry
In convex quadrilateral $ ABCD$, $ AB\equal{}a$, $ BC\equal{}b$, $ CD\equal{}c$, $ DA\equal{}d$, $ AC\equal{}e$, $ BD\equal{}f$. If $ \max \{a,b,c,d,e,f \}\equal{}1$, then find the maximum value of $ abcd$.

2020 Lusophon Mathematical Olympiad, 4

Let $ABC$ be an acute triangle. Its incircle touches the sides $BC$, $CA$ and $AB$ at the points $D$, $E$ and $F$, respectively. Let $P$, $Q$ and $R$ be the circumcenters of triangles $AEF$, $BDF$ and $CDE$, respectively. Prove that triangles $ABC$ and $PQR$ are similar.

2015 Oral Moscow Geometry Olympiad, 2

Line $\ell$ is perpendicular to one of the medians of the triangle. The perpendicular bisectors of the sides of this triangle intersect line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the remaining two.