This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021-2022 OMMC, 21

Tags:
For some real number $a$, define two parabolas on the coordinate plane with equations $x = y^2 + a$ and $y = x^2 + a$. Suppose there are $3$ lines, each tangent to both parabolas, that form an equilateral triangle with positive area $s$. If $s^2 = \tfrac pq$ for coprime positive integers $p$, $q$, find $p + q$. [i]Proposed by Justin Lee[/i]

1997 Tuymaada Olympiad, 3

Is it possible to paint all natural numbers in $6$ colors, for each one color to be used and the sum of any five numbers of different color to be painted in the sixth color?

2011 N.N. Mihăileanu Individual, 1

Let be a natural number $ n\ge 2, $ two complex numbers $ p,q, $ and four matrices $ A,B,C,D\in\mathcal{M}_n(\mathbb{C}) $ such that $ A+B=C+D=pI,AB+CD=qI $ and $ ABCD=0. $ Show that $ BCDA=0. $ [i]Marius Cavachi[/i]

2004 All-Russian Olympiad Regional Round, 10.1

The sum of positive numbers $a, b, c$ is equal to $\pi/2$. Prove that $$\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.$$

2018 Germany Team Selection Test, 1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

2024 ISI Entrance UGB, P4

Tags: calculus , limit , function
Let $f: \mathbb R \to \mathbb R$ be a function which is differentiable at $0$. Define another function $g: \mathbb R \to \mathbb R$ as follows: $$g(x) = \begin{cases} f(x)\sin\left(\frac 1x\right) ~ &\text{if} ~ x \neq 0 \\ 0 &\text{if} ~ x = 0. \end{cases}$$ Suppose that $g$ is also differentiable at $0$. Prove that \[g'(0) = f'(0) = f(0) = g(0) = 0.\]

2025 Sharygin Geometry Olympiad, 19

Tags: geometry
Let $I$ be the incenter of a triangle $ABC$; $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ be the orthocenters of the triangles $BIC$, $AIC$, $AIB$; $M_{a}$, $M_{b}$, $M_{c}$ be the midpoints of $BC$, $CA$, $AB$, and $S_{a}$, $S_{b}$, $S_{c}$ be the midpoints of $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$. Prove that $M_{a}S_{a}$, $M_{b}S_{b}$, $M_{c}S_{c}$ concur. Proposed by: S Kuznetsov

Russian TST 2015, P1

Let $n>4$ be a natural number. Prove that \[\sum_{k=2}^n\sqrt[k]{\frac{k}{k-1}}<n.\]

Croatia MO (HMO) - geometry, 2013.7

In triangle $ABC$, the angle at vertex $B$ is $120^o$. Let $A_1, B_1, C_1$ be points on the sides $BC, CA, AB$ respectively such that $AA_1, BB_1, CC_1$ are bisectors of the angles of triangle $ABC$. Determine the angle $\angle A_1B_1C_1$.

2021 Science ON all problems, 3

Real numbers $a,b,c$ with $0\le a,b,c\le 1$ satisfy the condition $$a+b+c=1+\sqrt{2(1-a)(1-b)(1-c)}.$$ Prove that $$\sqrt{1-a^2}+\sqrt{1-b^2}+\sqrt{1-c^2}\le \frac{3\sqrt 3}{2}.$$ [i] (Nora Gavrea)[/i]

2018 Iran MO (3rd Round), 4

Let $P(x)$ be a non-zero polynomial with real coefficient so that $P(0)=0$.Prove that for any positive real number $M$ there exist a positive integer $d$ so that for any monic polynomial $Q(x)$ with degree at least $d$ the number of integers $k$ so that $|P(Q(k))| \le M$ is at most equal to the degree of $Q$.

2003 Rioplatense Mathematical Olympiad, Level 3, 2

Let $n$ and $k$ be positive integers. Consider $n$ infinite arithmetic progressions of nonnegative integers with the property that among any $k$ consecutive nonnegative integers, at least one of $k$ integers belongs to one of the $n$ arithmetic progressions. Let $d_1,d_2,\ldots,d_n$ denote the differences of the arithmetic progressions, and let $d=\min\{d_1,d_2,\ldots,d_n\}$. In terms of $n$ and $k$, what is the maximum possible value of $d$?

1968 Bulgaria National Olympiad, Problem 3

Prove that a binomial coefficient $\binom nk$ is odd if and only if all digits $1$ of $k$, when $k$ is written in binary, are on the same positions when $n$ is written in binary. [i]I. Dimovski[/i]

1998 China Team Selection Test, 3

For any $h = 2^{r}$ ($r$ is a non-negative integer), find all $k \in \mathbb{N}$ which satisfy the following condition: There exists an odd natural number $m > 1$ and $n \in \mathbb{N}$, such that $k \mid m^{h} - 1, m \mid n^{\frac{m^{h}-1}{k}} + 1$.

2023 Myanmar IMO Training, 3

Let $\triangle ABC$ be a triangle such that $AB = AC$, and let its circumcircle be $\Gamma$. Let $\omega$ be a circle which is tangent to $AB$ and $AC$ at $B$ and $C$. Point $P$ belongs to $\omega$, and lines $PB$ and $PC$ intersect $\Gamma$ again at $Q$ and $R$. $X$ and $Y$ are points on lines $BR$ and $CQ$ such that $AX = XB$ and $AY = YC$. Show that as $P$ varies on $\omega$, the circumcircle of $\triangle AXY$ passes through a fixed point other than $A$.

2014 Taiwan TST Round 1, 1

Prove that for positive reals $a$, $b$, $c$ we have \[ 3(a+b+c) \ge 8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}. \]

2007 F = Ma, 35

Tags:
A point object of mass $m$ is connected to a cylinder of radius $R$ via a massless rope. At time $t = 0$ the object is moving with an initial velocity $v_0$ perpendicular to the rope, the rope has a length $L_0$, and the rope has a non-zero tension. All motion occurs on a horizontal frictionless surface. The cylinder remains stationary on the surface and does not rotate. The object moves in such a way that the rope slowly winds up around the cylinder. The rope will break when the tension exceeds $T_{max}$. Express your answers in terms of $T_{max}$, $m$, $L_0$, $R$, and $v_0$. [asy] size(200); real L=6; filldraw(CR((0,0),1),gray(0.7),black); path P=nullpath; for(int t=0;t<370;++t) { pair X=dir(180-t)+(L-t/180)*dir(90-t); if(X.y>L) X=(X.x,L); P=P--X; } draw(P,dashed,EndArrow(size=7)); draw((-1,0)--(-1,L)--(2,L),EndArrow(size=7)); filldraw(CR((-1,L),0.25),gray(0.7),black);[/asy]What is the kinetic energy of the object at the instant that the rope breaks? $ \textbf{(A)}\ \frac{mv_0^2}{2} $ $ \textbf{(B)}\ \frac{mv_0^2R}{2L_0} $ $ \textbf{(C)}\ \frac{mv_0^2R^2}{2L_0^2} $ $ \textbf{(D)}\ \frac{mv_0^2L_0^2}{2R^2} $ $ \textbf{(E)}\ \text{none of the above} $

2007 ITest, 24

Let $N$ be the smallest positive integer $N$ such that $2008N$ is a perfect square and $2007N$ is a perfect cube. Find the remainder when $N$ is divided by $25$. $\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l} \textbf{(A) }0&\textbf{(B) }1&\textbf{(C) }2\\\\ \textbf{(D) }3&\textbf{(E) }4&\textbf{(F) }5\\\\ \textbf{(G) }6&\textbf{(H) }7&\textbf{(I) }8\\\\ \textbf{(J) }9&\textbf{(K) }10&\textbf{(L) }11\\\\ \textbf{(M) }12&\textbf{(N) }13&\textbf{(O) }14\\\\ \textbf{(P) }15&\textbf{(Q) }16&\textbf{(R) }17\\\\ \textbf{(S) }18&\textbf{(T) }19&\textbf{(U) }20\\\\ \textbf{(V) }21&\textbf{(W) }22 & \textbf{(X) }23 \end{array}$

2012 Iran MO (3rd Round), 4

Suppose $f(z)=z^n+a_1z^{n-1}+...+a_n$ for which $a_1,a_2,...,a_n\in \mathbb C$. Prove that the following polynomial has only one positive real root like $\alpha$ \[x^n+\Re(a_1)x^{n-1}-|a_2|x^{n-2}-...-|a_n|\] and the following polynomial has only one positive real root like $\beta$ \[x^n-\Re(a_1)x^{n-1}-|a_2|x^{n-2}-...-|a_n|.\] And roots of the polynomial $f(z)$ satisfy $-\beta \le \Re(z) \le \alpha$.

2019 AMC 12/AHSME, 1

Tags: percent , geometry , ratio
The area of a pizza with radius $4$ inches is $N$ percent larger than the area of a pizza with radius $3$ inches. What is the integer closest to $N$? $\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78$

2014 Moldova Team Selection Test, 3

Let $ABCD$ be a cyclic quadrilateral. The bisectors of angles $BAD$ and $BCD$ intersect in point $K$ such that $K \in BD$. Let $M$ be the midpoint of $BD$. A line passing through point $C$ and parallel to $AD$ intersects $AM$ in point $P$. Prove that triangle $\triangle DPC$ is isosceles.

2017 Bulgaria JBMO TST, 3

Given are sheets and the numbers $00, 01, \ldots, 99$ are written on them. We must put them in boxes $000, 001, \ldots, 999$ so that the number on the sheet is the number on the box with one digit erased. What is the minimum number of boxes we need in order to put all the sheets?

2007 Harvard-MIT Mathematics Tournament, 6

Tags: geometry
Triangle $ABC$ has $\angle A=90^\circ$, side $BC=25$, $AB>AC$, and area $150$. Circle $\omega$ is inscribed in $ABC$, with $M$ its point of tangency on $AC$. Line $BM$ meets $\omega$ a second time at point $L$. Find the length of segment $BL$.

2016 Switzerland - Final Round, 5

Let $ABC$ be a right triangle with $\angle ACB = 90^o$ and M the center of $AB$. Let $G$ br any point on the line $MC$ and $P$ a point on the line $AG$, such that $\angle CPA = \angle BAC$ . Further let $Q$ be a point on the straight line $BG$, such that $\angle BQC = \angle CBA$ . Show that the circles of the triangles $AQG$ and $BPG$ intersect on the segment $AB$.

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.