This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2009 Moldova Team Selection Test, 4

[color=darkred]Let $ m$ and $ n$ be two nonzero natural numbers. In every cell $ 1 \times 1$ of the rectangular table $ 2m \times 2n$ are put signs $ \plus{}$ or $ \minus{}$. We call [i]cross[/i] an union of all cells which are situated in a line and in a column of the table. Cell, which is situated at the intersection of these line and column is called [i]center of the cross[/i]. A transformation is defined in the following way: firstly we mark all points with the sign $ \minus{}$. Then consecutively, for every marked cell we change the signs in the cross, whose center is the choosen cell. We call a table [i]accesible[/i] if it can be obtained from another table after one transformation. Find the number of all [i]accesible[/i] tables.[/color]

1986 Traian Lălescu, 2.2

We know that the function $ f: \left[ 0,\frac{\pi }{2}\right]\longrightarrow [a,b], f(x)=\sqrt[n]{\cos x } +\sqrt[n]{\sin x} , $ is surjective for a given natural number $ n\ge 2. $ Determine the numbers $ a,b, $ and the monotony of $ f. $

2014 Tuymaada Olympiad, 2

A $k\times \ell$ 'parallelogram' is drawn on a paper with hexagonal cells (it consists of $k$ horizontal rows of $\ell$ cells each). In this parallelogram a set of non-intersecting sides of hexagons is chosen; it divides all the vertices into pairs. Juniors) How many vertical sides can there be in this set? Seniors) How many ways are there to do that? [asy] size(120); defaultpen(linewidth(0.8)); path hex = dir(30)--dir(90)--dir(150)--dir(210)--dir(270)--dir(330)--cycle; for(int i=0;i<=3;i=i+1) { for(int j=0;j<=2;j=j+1) { real shiftx=j*sqrt(3)/2+i*sqrt(3),shifty=j*3/2; draw(shift(shiftx,shifty)*hex); } } [/asy] [i](T. Doslic)[/i]

2017 Estonia Team Selection Test, 3

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2009 Junior Balkan Team Selection Test, 2

In isosceles right triangle $ ABC$ a circle is inscribed. Let $ CD$ be the hypotenuse height ($ D\in AB$), and let $ P$ be the intersection of inscribed circle and height $ CD$. In which ratio does the circle divide segment $ AP$?

2011 NZMOC Camp Selection Problems, 1

A three by three square is filled with positive integers. Each row contains three different integers, the sums of each row are all the same, and the products of each row are all different. What is the smallest possible value for the sum of each row?

PEN A Problems, 11

Let $a, b, c, d$ be integers. Show that the product \[(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)\] is divisible by $12$.

2005 Georgia Team Selection Test, 9

Tags: algebra , induction
Let $ a_{0},a_{1},\ldots,a_{n}$ be integers, one of which is nonzero, and all of the numbers are not less than $ \minus{} 1$. Prove that if \[ a_{0} \plus{} 2a_{1} \plus{} 2^{2}a_{2} \plus{} \cdots \plus{} 2^{n}a_{n} \equal{} 0,\] then $ a_{0} \plus{} a_{1} \plus{} \cdots \plus{} a_{n} > 0$.

1971 Bundeswettbewerb Mathematik, 2

The inhabitants of a planet speak a language only using the letters $A$ and $O$. To avoid mistakes, any two words of equal length differ at least on three positions. Show that there are not more than $\frac{2^n}{n+1}$ words with $n$ letters.

2012 BMT Spring, round 2

[b]p1.[/b] $4$ balls are distributed uniformly at random among $6$ bins. What is the expected number of empty bins? [b]p2.[/b] Compute ${150 \choose 20 }$ (mod $221$). [b]p3.[/b] On the right triangle $ABC$, with right angle at$ B$, the altitude $BD$ is drawn. $E$ is drawn on $BC$ such that AE bisects angle $BAC$ and F is drawn on $AC$ such that $BF$ bisects angle $CBD$. Let the intersection of $AE$ and $BF$ be $G$. Given that $AB = 15$,$ BC = 20$, $AC = 25$, find $\frac{BG}{GF}$ . [b]p4.[/b] What is the largest integer $n$ so that $\frac{n^2-2012}{n+7}$ is also an integer? [b]p5.[/b] What is the side length of the largest equilateral triangle that can be inscribed in a regular pentagon with side length $1$? [b]p6.[/b] Inside a LilacBall, you can find one of $7$ different notes, each equally likely. Delcatty must collect all $7$ notes in order to restore harmony and save Kanto from eternal darkness. What is the expected number of LilacBalls she must open in order to do so? PS. You had better use hide for answers.

2009 Junior Balkan Team Selection Tests - Romania, 4

To obtain a square $P$ of side length $2$ cm divided into $4$ unit squares it is sufficient to draw $3$ squares: $P$ and another $2$ unit squares with a common vertex, as shown below: [img]https://cdn.artofproblemsolving.com/attachments/1/d/827516518871ec8ff00a66424f06fda9812193.png[/img] Find the minimum number of squares sufficient to obtain a square.of side length $n$ cm divided into $n^2$ unit squares ($n \ge 3$ is an integer).

2024 Chile National Olympiad., 2

On a table, there are many coins and a container with two coins. Vale and Diego play the following game, where Vale starts and then Diego plays, alternating turns. If at the beginning of a turn the container contains \( n \) coins, the player can add a number \( d \) of coins, where \( d \) divides exactly into \( n \) and \( d < n \). The first player to complete at least 2024 coins in the container wins. Prove that there exists a strategy for Vale to win, no matter the decisions made by Diego.

1997 Yugoslav Team Selection Test, Problem 1

Consider a regular $n$-gon $A_1A_2\ldots A_n$ with area $S$. Let us draw the lines $l_1,l_2,\ldots,l_n$ perpendicular to the plane of the $n$-gon at $A_1,A_2,\ldots,A_n$ respectively. Points $B_1,B_2,\ldots,B_n$ are selected on lines $l_1,l_2,\ldots,l_n$ respectively so that: (i) $B_1,B_2,\ldots,B_n$ are all on the same side of the plane of the $n$-gon; (ii) Points $B_1,B_2,\ldots,B_n$ lie on a single plane; (iii) $A_1B_1=h_1,A_2B_2=h_2,\ldots,A_nB_n=h_n$. Express the volume of polyhedron $A_1A_2\ldots A_nB_1B_2\ldots B_n$ as a function in $S,h_1,\ldots,h_n$.

2005 Junior Balkan Team Selection Tests - Moldova, 4

Let the $A$ be the set of all nonenagative integers. It is given function such that $f:\mathbb{A}\rightarrow\mathbb{A}$ with $f(1) = 1$ and for every element $n$ od set $A$ following holds: [b]1)[/b] $3 f(n) \cdot f(2n+1) = f(2n) \cdot (1+3 \cdot f(n))$; [b]2)[/b] $f(2n) < 6f(n)$, Find all solutions of $f(k)+f(l) = 293$, $k<l$.

2024 Mid-Michigan MO, 10-12

1. There are $100$ participants. Out of every group of $12$ participants, there is one pair of familiar participants. Each participant is given a number (not necessarily $1$ through $100$). Prove that there is a pair of familiar participants whose number has the same starting digit. 2. $\sqrt{x + \sqrt{x + \sqrt{x + \dots + \sqrt{x}}}} = y$. If the left side is finite, find all integer solutions. 3. Is there a geometric sequence such that $a_0 > 0, b > 1$, and so that $a_l$ is an integer for $0 \le l \le 9$, but $a_l$ is not an integer for $l>9$? If so, find it. 4. Suppose r and s are positive integers and that $2^r$ is a permutation of the decimal representation of $2^s$. Prove that $r=s$. 5. Find the minimum area of a right triangle with an inscribed circle that has a radius of $1$ cm. [hide = Note]This isn't exactly verbatim, just paraphrased. I will update the questions when the official problems/solutions are released. In the meanwhile, feel free to post your solutions below![/hide]

1954 AMC 12/AHSME, 18

Tags: inequalities
Of the following sets, the one that includes all values of $ x$ which will satisfy $ 2x \minus{} 3 > 7 \minus{} x$ is: $ \textbf{(A)}\ x > 4 \qquad \textbf{(B)}\ x < \frac {10}{3} \qquad \textbf{(C)}\ x \equal{} \frac {10}{3} \qquad \textbf{(D)}\ x > \frac {10}{3} \qquad \textbf{(E)}\ x < 0$

Russian TST 2021, P2

Let $ABCD$ be a cyclic quadrilateral. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ such that $KLMN$ is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$. Prove that the common internal tangents to $\omega_A$, and $\omega_C$ and the common internal tangents to $\omega_B$ and $\omega_D$ are concurrent.

1999 Korea Junior Math Olympiad, 6

For a positive integer $n$, let $p(n)$ denote the smallest prime divisor of $n$. Find the maximum number of divisors $m$ can have if $p(m)^4>m$.

2010 Balkan MO Shortlist, G6

In a triangle $ABC$ the excircle at the side $BC$ touches $BC$ in point $D$ and the lines $AB$ and $AC$ in points $E$ and $F$ respectively. Let $P$ be the projection of $D$ on $EF$. Prove that the circumcircle $k$ of the triangle $ABC$ passes through $P$ if and only if $k$ passes through the midpoint $M$ of the segment $EF$.

2022 Taiwan TST Round 3, 5

Let $ABC$ be an acute triangle with circumcenter $O$ and circumcircle $\Omega$. Choose points $D, E$ from sides $AB, AC$, respectively, and let $\ell$ be the line passing through $A$ and perpendicular to $DE$. Let $\ell$ intersect the circumcircle of triangle $ADE$ and $\Omega$ again at points $P, Q$, respectively. Let $N$ be the intersection of $OQ$ and $BC$, $S$ be the intersection of $OP$ and $DE$, and $W$ be the orthocenter of triangle $SAO$. Prove that the points $S$, $N$, $O$, $W$ are concyclic. [i]Proposed by Li4 and me.[/i]

2006 India Regional Mathematical Olympiad, 4

A $ 6\times 6$ square is dissected in to 9 rectangles by lines parallel to its sides such that all these rectangles have integer sides. Prove that there are always [b]two[/b] congruent rectangles.

2021 Thailand TST, 1

For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$

2021 Simon Marais Mathematical Competition, B1

Let $n \ge 2$ be an integer, and let $O$ be the $n \times n$ matrix whose entries are all equal to $0$. Two distinct entries of the matrix are chosen uniformly at random, and those two entries are changed from $0$ to $1$. Call the resulting matrix $A$. Determine the probability that $A^2 = O$, as a function of $n$.

LMT Team Rounds 2010-20, A15

Tags:
Let $x$ satisfy $x^4+x^3+x^2+x+1=0$. Compute the value of $(5x+x^2)(5x^2+x^4)(5x^3+x^6)(5x^4+x^8)$. [i]Proposed by Andrew Zhao[/i]

2016 Bulgaria EGMO TST, 3

The eyes of a magician are blindfolded while a person $A$ from the audience arranges $n$ identical coins in a row, some are heads and the others are tails. The assistant of the magician asks $A$ to write an integer between $1$ and $n$ inclusive and to show it to the audience. Having seen the number, the assistant chooses a coin and turns it to the other side (so if it was heads it becomes tails and vice versa) and does not touch anything else. Afterwards, the bandages are removed from the magician, he sees the sequence and guesses the written number by $A$. For which $n$ is this possible? [hide=Spoiler hint] The original formulation asks: a) Show that if $n$ is possible, so is $2n$; b) Show that only powers of $2$ are possible; I have omitted this from the above formulation, for the reader's interest. [/hide]