This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 AMC 12/AHSME Spring, 24

Tags:
Let $ABCD$ be a parallelogram with area $15$. Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points. [asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy] Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$ $\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$

2010 Iran MO (3rd Round), 1

Prove that the group of orientation-preserving symmetries of the cube is isomorphic to $S_4$ (the group of permutations of $\{1,2,3,4\}$).(20 points)

2021 CMIMC Integration Bee, 10

$$\int_{-\infty}^\infty\frac{x\arctan(x)}{x^4+1}\,dx$$ [i]Proposed by Connor Gordon[/i]

2010 Macedonia National Olympiad, 1

Solve the equation \[ x^3+2y^3-4x-5y+z^2=2012, \] in the set of integers.

2019 AMC 8, 16

Tags:
Qiang drives 15 miles at an average speed of 30 miles per hour. How many additional miles will he have to drive at 55 miles per hour to average 50 miles per hour for the entire trip? $\textbf{(A) }45\qquad\textbf{(B) }62\qquad\textbf{(C) }90\qquad\textbf{(D) }110\qquad\textbf{(E) }135$

2020 Kürschák Competition, P1

Let $n$ and $k$ be positive integers. Given $n$ closed discs in the plane such that no matter how we choose $k + 1$ of them, there are always two of the chosen discs that have no common point. Prove that the $n$ discs can be partitioned into at most $10k$ classes such that any two discs in the same class have no common point.

2017 ASDAN Math Tournament, 4

Tags:
Alice and Bob are painting a house. Alice can paint a house in $20$ hours by herself. Bob can paint a house in $40$ hours by himself. Both people start at the same time, paint at their own constant rate, and work together to paint one house. When the house is fully painted, what fraction of the house was painted by Alice?

1997 Tournament Of Towns, (560) 1

$M$ and $N$ are the midpoints of the sides $AB$ and $AC$ of a triangle ABC respectively. $P$ and $Q$ are points on the sides $AB$ and $AC$ respectively such that the bisector of the angle $ACB$ also bisects the angle $MCP$, and the bisector of the angle $ABC$ also bisects the angle $NBQ$. If $AP = AQ$, does it follow that $ABC$ is isosceles? (V Senderov)

2004 Abels Math Contest (Norwegian MO), 3

Tags: area , geometry , cyclic
In a quadrilateral $ABCD$ with $\angle A = 60^o, \angle B = 90^o, \angle C = 120^o$, the point $M$ of intersection of the diagonals satisfies $BM = 1$ and $MD = 2$. (a) Prove that the vertices of $ABCD$ lie on a circle and find the radius of that circle. (b) Find the area of quadrilateral $ABCD$.

2024 AMC 12/AHSME, 1

Tags:
What is the value of $9901\cdot101-99\cdot10101?$ $\textbf{(A) }2\qquad\textbf{(B) }20\qquad\textbf{(C) }21\qquad\textbf{(D) }200\qquad\textbf{(E) }2020$

2015 Azerbaijan Team Selection Test, 2

Alex and Bob play a game 2015 x 2015 checkered board by the following rules.Initially the board is empty: the players move in turn, Alex moves first. By a move, a player puts either red or blue token into any unoccopied square. If after a player's move there appears a row of three consecutive tokens of the same color( this row may be vertical,horizontal, or dioganal), then this player wins. If all the cells are occupied by tokens, but no such row appears, then a draw is declared.Determine whether Alex, Bob, or none of them has winning strategy.

2021 USMCA, 30

Tags:
I start with a sequence of letters $A_1 A_2 \cdots A_{2021} A_1 A_2 \cdots A_{2021} A_1 A_2 \cdots A_{2021}$. I go through $i = 1, 2, 3, \cdots, 6062$ in order, and for each $i$, I can choose to swap letters $i$ and $i+1$. Let $N$ be the number of distinct strings I can end up with. What is the remainder when $N$ is divided by $2017$?

2019 Online Math Open Problems, 13

Tags:
Compute the number of subsets $S$ with at least two elements of $\{2^2, 3^3, \dots, 216^{216}\}$ such that the product of the elements of $S$ has exactly $216$ positive divisors. [i]Proposed by Sean Li[/i]

2003 Junior Tuymaada Olympiad, 6

On a circle, numbers from $1$ to $100$ are arranged in some order. We call a pair of numbers [i]good [/i] if these two numbers do not stand side by side, and at least on one of the two arcs into which they break a circle, all the numbers are less than each of them. What can be the total number of [i]good [/i] pairs?

2023 Azerbaijan IMO TST, 2

In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: [list] [*] The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. [*] The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. [/list] We say that a tree is [i]majestic[/i] if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.

2005 Morocco National Olympiad, 2

Find all the positive integers $x,y,z$ satisfiing : $x^{2}+y^{2}+z^{2}=2xyz$

2006 National Olympiad First Round, 24

Tags:
In a handball tournament with $n$ teams, each team played against other teams exactly once. In each game, the winner got $2$ points, the loser got $0$ point, and each team got $1$ point if there was a tie. After the tournament ended, each team had different score than the others, and the last team defeated the first three teams. What is the least possible value of $n$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{None of above} $

2014 Junior Balkan Team Selection Tests - Romania, 1

We call a composite positive integer $n$ nice if it is possible to arrange its factors that are larger than $1$ on a circle such that two neighboring numbers are not coprime. How many of the elements of the set $\{1, 2, 3, ..., 100\}$ are nice?

2009 Stanford Mathematics Tournament, 8

Tags: algebra
Simplify $\sum_{k=1}^{n}\frac{k^2(k - n)}{n^4}$

2015 Canada National Olympiad, 1

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.

1982 IMO Shortlist, 7

Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient $1$ and with one of its roots equal to the product of the other two. Show that $2p(-1)$ is a multiple of $p(1)+p(-1)-2(1+p(0)).$

2015 May Olympiad, 1

The teacher secretly thought of a three-digit $S$ number. Students $A, B, C$ and $D$ tried to guess, saying, respectively, $541$, $837$, $291$ and $846$. The teacher told them, “Each of you got it right exactly one digit of $S$ and in the correct position ”. What is the number $S$?

2021 MIG, 22

Tags:
Find the sum of all possible values of $ab$, given that $(a,b)$ is a pair of real numbers satisfying \[a + \dfrac2b = 9~\text{ and }~b + \dfrac2a = 1.\] $\textbf{(A) }\dfrac{10}9\qquad\textbf{(B) }\dfrac32\qquad\textbf{(C) }3\qquad\textbf{(D) }5\qquad\textbf{(E) }9$

2019 Argentina National Olympiad, 3

In triangle $ABC$ it is known that $\angle ACB = 2\angle ABC$. Furthermore $P$ is an interior point of the triangle $ABC$ such that $AP = AC$ and $PB = PC$. Prove that $\angle BAC = 3 \angle BAP$.

2015 Princeton University Math Competition, 15

Tags:
Let $S$ be the set of ordered integer pairs $(x, y)$ such that $0 < x < y < 42$ and there exists some integer $n$ such that $x^6-y^6 \mid n^2+2015^2$. What is the sum $\sum_{(x_i, y_i) \in S}x_iy_i$?