This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 CMIMC Combinatorics & Computer Science, Estimation

Max flips $2020$ fair coins. Let the probability that there are at most $505$ heads be $p$. Estimate $-\log_2(p)$ to 5 decimal places, in the form $x.abcde$ where $x$ is a positive integer and $a, b, c, d, e$ are decimal digits.

2005 Nordic, 4

The circle $\zeta_{1}$ is inside the circle $\zeta_{2}$, and the circles touch each other at $A$. A line through $A$ intersects $\zeta_{1}$ also at $B$, and $\zeta_{2}$ also at $C$. The tangent to $\zeta_{1}$ at $B$ intersects $\zeta_{2}$ at $D$ and $E$. The tangents of $\zeta_{1}$ passing thorugh $C$ touch $\zeta_{2}$ at $F$ and $G$. Prove that $D$, $E$, $F$ and $G$ are concyclic.

Today's calculation of integrals, 874

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

1999 USAMTS Problems, 3

Tags:
Suppose that the 32 computers in a certain network are numbered with the 5-bit integers $00000, 00001, 00010, ..., 11111$ (bit is short for binary digit). Suppose that there is a one-way connection from computer $A$ to computer $B$ if and only if $A$ and $B$ share four of their bits with the remaining bit being $0$ at $A$ and $1$ at $B$. (For example, $10101$ can send messages to $11101$ and to $10111$.) We say that a computer is at level $k$ in the network if it has exactly $k$ 1’s in its label $(k = 0, 1, 2, ..., 5)$. Suppose further that we know that $12$ computers, three at each of the levels $1$, $2$, $3$, and $4$, are malfunctioning, but we do not know which ones. Can we still be sure that we can send a message from $00000$ to $11111$?

2023 Austrian MO National Competition, 1

Given is a nonzero real number $\alpha$. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$f(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy$$ for all $x, y \in \mathbb{R}$.

2007 Stanford Mathematics Tournament, 20

Tags:
Let there be $ 4n \plus{} 2$ distinct paths in space with exactly $ 2n^2 \plus{} 6n \plus{} 1$ points at which exactly two of the paths intersect. (A path never intersects itself.) What is the maximum number of points where exactly three paths intersect?

2023 Macedonian Mathematical Olympiad, Problem 2

Let $p$ and $q$ be odd prime numbers and $a$ a positive integer so that $p|a^q+1$ and $q|a^p+1$. Show that $p|a+1$ or $q|a+1$. [i]Authored by Nikola Velov[/i]

2014 Contests, 1

In the figure of [url]http://www.artofproblemsolving.com/Forum/download/file.php?id=50643&mode=view[/url] $\odot O_1$ and $\odot O_2$ intersect at two points $A$, $B$. The extension of $O_1A$ meets $\odot O_2$ at $C$, and the extension of $O_2A$ meets $\odot O_1$ at $D$, and through $B$ draw $BE \parallel O_2A$ intersecting $\odot O_1$ again at $E$. If $DE \parallel O_1A$, prove that $DC \perp CO_2$.

2018 Pan-African Shortlist, G5

Let $ABC$ be a triangle with $AB \neq AC$. The incircle of $ABC$ touches the sides $BC$, $CA$, $AB$ at $X$, $Y$, $Z$ respectively. The line through $Z$ and $Y$ intersects $BC$ extended in $X^\prime$. The lines through $B$ that are parallel to $AX$ and $AC$ intersect $AX^\prime$ in $K$ and $L$ respectively. Prove that $AK = KL$.

2010 Laurențiu Panaitopol, Tulcea, 3

Let be a complex number $ z $ having the property that $ \Re \left( z^n \right) >\Im \left( z^n \right) , $ for any natural numbers $ n. $ Show that $ z $ is a positive real number. [i]Laurențiu Panaitopol[/i]

2010 AMC 12/AHSME, 3

Rectangle $ ABCD$, pictured below, shares $50\%$ of its area with square $ EFGH$. Square $ EFGH$ shares $20\%$ of its area with rectangle $ ABCD$. What is $ \frac{AB}{AD}$? [asy]unitsize(5mm); defaultpen(linewidth(0.8pt)+fontsize(10pt)); pair A=(0,3), B=(8,3), C=(8,2), D=(0,2), Ep=(0,4), F=(4,4), G=(4,0), H=(0,0); fill(shift(0,2)*xscale(4)*unitsquare,grey); draw(Ep--F--G--H--cycle); draw(A--B--C--D); label("$A$",A,W); label("$B$",B,E); label("$C$",C,E); label("$D$",D,W); label("$E$",Ep,NW); label("$F$",F,NE); label("$G$",G,SE); label("$H$",H,SW);[/asy]$ \textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 10$

2020 USOJMO, 1

Tags:
Let $n \geq 2$ be an integer. Carl has $n$ books arranged on a bookshelf. Each book has a height and a width. No two books have the same height, and no two books have the same width. Initially, the books are arranged in increasing order of height from left to right. In a move, Carl picks any two adjacent books where the left book is wider and shorter than the right book, and swaps their locations. Carl does this repeatedly until no further moves are possible. Prove that regardless of how Carl makes his moves, he must stop after a finite number of moves, and when he does stop, the books are sorted in increasing order of width from left to right. [i]Proposed by Milan Haiman[/i]

2013 Brazil Team Selection Test, 3

Let $x$ and $y$ be positive integers. If ${x^{2^n}}-1$ is divisible by $2^ny+1$ for every positive integer $n$, prove that $x=1$.

2012 CIIM, Problem 1

For each positive integer $n$ let $A_n$ be the $n \times n$ matrix such that its $a_{ij}$ entry is equal to ${i+j-2 \choose j-1}$ for all $1\leq i,j \leq n.$ Find the determinant of $A_n$.

2018 European Mathematical Cup, 4

Let $n$ be a positive integer. Ana and Banana are playing the following game: First, Ana arranges $2n$ cups in a row on a table, each facing upside-down. She then places a ball under a cup and makes a hole in the table under some other cup. Banana then gives a finite sequence of commands to Ana, where each command consists of swapping two adjacent cups in the row. Her goal is to achieve that the ball has fallen into the hole during the game. Assuming Banana has no information about the position of the hole and the position of the ball at any point, what is the smallest number of commands she has to give in order to achieve her goal?

2009 Princeton University Math Competition, 2

It is known that a certain mechanical balance can measure any object of integer mass anywhere between 1 and 2009 (both included). This balance has $k$ weights of integral values. What is the minimum $k$ for which there exist weights that satisfy this condition?

2019 Ecuador Juniors, 4

Tags: geometry
Let $ABCD$ be a square. On the segments $AB$, $BC$, $CD$ and $DA$, choose points $E, F, G$ and $H$, respectively, such that $AE = BF = CG = DH$. Let $P$ be the intersection point of $AF$ and $DE$, $Q$ be the intersection point of $BG$ and $AF$, $R$ the intersection point of $CH$ and $BG$, and $S$ the point of intersection of $DE$ and $CH$. Prove that $PQRS$ is a square.

2009 District Olympiad, 3

Let $a$ and $b$ be non-negative integers. Prove that the number $a^2 + b^2$ is the difference of two perfect squares if and only if $ab$ is even.

2019 Balkan MO Shortlist, A2

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[ f(xy) = yf(x) + x + f(f(y) - f(x)) \] for all $x,y \in \mathbb{R}$.

2010 ELMO Shortlist, 7

Tags: algebra
Find the smallest real number $M$ with the following property: Given nine nonnegative real numbers with sum $1$, it is possible to arrange them in the cells of a $3 \times 3$ square so that the product of each row or column is at most $M$. [i]Evan O' Dorney.[/i]

2022 Argentina National Olympiad Level 2, 6

In a hockey tournament, there is an odd number $n$ of teams. Each team plays exactly one match against each of the other teams. In this tournament, each team receives $2$ points for a win, $1$ point for a draw, and $0$ points for a loss. At the end of the tournament, it was observed that all the points obtained by the $n$ teams were different. For each $n$, determine the maximum possible number of draws that could have occurred in this tournament.

2017 Bulgaria JBMO TST, 2

Let $k$ be the incircle of triangle $ABC$. It touches $AB=c, BC=a, AC=b$ at $C_1, A_1, B_1$, respectively. Suppose that $KC_1$ is a diameter of the incircle. Let $C_1A_1$ intersect $KB_1$ at $N$ and $C_1B_1$ intersect $KA_1$ at $M$. Find the length of $MN$.

2007 Tournament Of Towns, 3

Determine all finite increasing arithmetic progressions in which each term is the reciprocal of a positive integer and the sum of all the terms is $1$.

2015 Purple Comet Problems, 26

Tags: probability
Seven people of seven different ages are attending a meeting. The seven people leave the meeting one at a time in random order. Given that the youngest person leaves the meeting sometime before the oldest person leaves the meeting, the probability that the third, fourth, and fifth people to leave the meeting do so in order of their ages (youngest to oldest) is $\frac{m}{n}$ , where m and n are relatively prime positive integers. Find $m + n$.

II Soros Olympiad 1995 - 96 (Russia), 9.6

Tags: radical , algebra
Without using a calculator (especially a computer), find out what is more: $$\sqrt[3]{5\sqrt{13}+18}- \sqrt[3]{2\sqrt{13}+5} \,\,\, or \,\,\, 1 $$