This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2024 Vietnam National Olympiad, 6

For each positive integer $n$, let $\tau (n)$ be the number of positive divisors of $n$. a) Find all positive integers $n$ such that $\tau(n)+2023=n$. b) Prove that there exist infinitely many positive integers $k$ such that there are exactly two positive integers $n$ satisfying $\tau(kn)+2023=n$.

2019 USMCA, 5

Tags:
What is the largest integer with distinct digits such that no two of its digits sum to a perfect square?

2025 Taiwan Mathematics Olympiad, 2

Let $a, b, c, d$ be four positive reals such that $abc+abd+acd+bcd = 1$. Determine all possible values for $$(ab + cd)(ac + bd)(ad + bc).$$ [i]Proposed by usjl and YaWNeeT[/i]

1989 Spain Mathematical Olympiad, 5

Consider the set $D$ of all complex numbers of the form $a+b\sqrt{-13}$ with $a,b \in Z$. The number $14 = 14+0\sqrt{-13}$ can be written as a product of two elements of $D$: $14 = 2 \cdot 7$. Find all possible ways to express $14$ as a product of two elements of $D$.

1981 AMC 12/AHSME, 23

[asy]defaultpen(linewidth(.8pt)); pair B = origin; pair A = dir(60); pair C = dir(0); pair circ = circumcenter(A,B,C); pair P = intersectionpoint(circ--(circ + (-1,0)),A--B); pair Q = intersectionpoint(circ--(circ + (1,0)),A--C); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$P$",P,NW); label("$Q$",Q,NE); draw(A--B--C--cycle); draw(circumcircle(A,B,C)); draw(P--Q); draw(Circle((0.5,0.09),0.385));[/asy] Equilateral $ \triangle ABC$ is inscribed in a circle. A second circle is tangent internally to the circumcircle at $ T$ and tangent to sides $ AB$ and $ AC$ at points $ P$ and $ Q$. If side $ BC$ has length $ 12$, then segment $ PQ$ has length $ \textbf{(A)}\ 6\qquad \textbf{(B)}\ 6\sqrt{3}\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 8\sqrt{3}\qquad \textbf{(E)}\ 9$

2001 239 Open Mathematical Olympiad, 2

In a convex quadrangle $ ABCD $, the rays $ DA $ and $ CB $ intersect at point $ Q $, and the rays $ BA $ and $ CD $ at the point $ P $. It turned out that $ \angle AQB = \angle APD $. The bisectors of the angles $ \angle AQB $ and $ \angle APD $ intersect the sides quadrangle at points $ X $, $ Y $ and $ Z $, $ T $ respectively. Circumscribed circles of triangles $ ZQT $ and $ XPY $ intersect at $ K $ inside quadrangle. Prove that $ K $ lies on the diagonal $ AC $.

2012 USAMTS Problems, 3

Let $f(x) = x-\tfrac1{x}$, and defi ne $f^1(x) = f(x)$ and $f^n(x) = f(f^{n-1}(x))$ for $n\ge2$. For each $n$, there is a minimal degree $d_n$ such that there exist polynomials $p$ and $q$ with $f^n(x) = \tfrac{p(x)}{q(x)}$ and the degree of $q$ is equal to $d_n$. Find $d_n$.

1988 IMO Longlists, 84

A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that \[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right) \] where X is the area of triangle $ ABC.$

I Soros Olympiad 1994-95 (Rus + Ukr), 10.1

The equation $x^2 + bx + c = 0$ has two different roots $x_1$ and $x_2$. It is also known that the numbers $b$, $x_1$, $c$, $x_2$ in the indicated order form an arithmetic progression. Find the difference of this progression.

1997 Tournament Of Towns, (539) 4

All edges of a tetrahedron $ABCD$ are equal. The tetrahedron $ABCD$ is inscribed in a sphere. $CC'$ and $DD'$ are diameters. Find the angle between the planes $ABC$' and $ACD'$. (A Zaslavskiy)

2014 IFYM, Sozopol, 6

Let $A$ and $B$ be two non-infinite sets of natural numbers, each of which contains at least 3 elements. Two numbers $a\in A$ and $b\in B$ are called [i]"harmonious"[/i], if they are not coprime. It is known that each element from $A$ is not [i]harmonious[/i] with at least one element from $B$ and each element from $B$ is harmonious with at least one from $A$. Prove that there exist $a_1,a_2\in A$ and $b_1,b_2\in B$ such that $(a_1,b_1)$ and $(a_2,b_2)$ are [i]harmonious[/i] but $(a_1,b_2)$ and $(a_2,b_1)$ are not.

2003 National High School Mathematics League, 1

Tags:
Delete all perfect squares in $1,2,3,\cdots$, then the 2003rd number is $\text{(A)}2046\qquad\text{(B)}2047\qquad\text{(C)}2048\qquad\text{(D)}2049$

2015 Paraguay Mathematical Olympiad, 4

Tags: geometry
The sidelengths of a triangle are natural numbers multiples of $7$, smaller than $40$. How many triangles satisfy these conditions?

Mathley 2014-15, 3

In a triangle $ABC$, $D$ is the reflection of $A$ about the sideline $BC$. A circle $(K)$ with diameter $AD$ meets $DB,DC$ at $M,N$ which are distinct from $D$. Let $E,F$ be the midpoint of $CA,AB$. The circumcircles of $KEM,KFN$ meet each other again at $L$, distinct from $K$. Let $KL$ meets $EF$ at $X$; points $Y,Z$ are defined in the same manner. Prove that three lines $AX,BY,CZ$ are concurrent. Tran Quang Hung, Dean of the Faculty of Science, Thanh Xuan, Hanoi.

2004 Croatia National Olympiad, Problem 3

Prove that for any three real numbers $x,y,z$ the following inequality holds: $$|x|+|y|+|z|-|x+y|-|y+z|-|z+x|+|x+y+z|\ge0.$$

2017 Saudi Arabia BMO TST, 1

Find the smallest prime $q$ such that $$q = a_1^2 + b_1^2 = a_2^2 + 2b_2^2 = a_3^2 + 3b_3^2 = ... = a_{10}^ 2 + 10b_{10}^2$$ where $a_i, b_i(i = 1, 2, ...,10)$ are positive integers

PEN A Problems, 29

For which positive integers $k$, is it true that there are infinitely many pairs of positive integers $(m, n)$ such that \[\frac{(m+n-k)!}{m! \; n!}\] is an integer?

2008 District Olympiad, 4

Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.

2005 Cuba MO, 9

Let $x_1, x_2, …, x_n$ and $y_1, y_2, …,y_n$ be positive reals such that $$x_1 + x_2 +.. + x_n \ge y_i \ge x^2_i$$ for all $i = 1, 2, …, n$. Prove that $$\frac{x_1}{x_1y_1 + x_2}+ + \frac{x_2}{x_2y_2 + x_3} + ...+ \frac{x_n}{x_ny_n + x_1}> \frac{1}{2n}.$$

1993 USAMO, 3

Consider functions $\, f: [0,1] \rightarrow \mathbb{R} \,$ which satisfy (i) $f(x) \geq 0 \,$ for all $\, x \,$ in $\, [0,1],$ (ii) $f(1) = 1,$ (iii) $f(x) + f(y) \leq f(x+y)\,$ whenever $\, x, \, y, \,$ and $\, x + y \,$ are all in $\, [0,1]$. Find, with proof, the smallest constant $\, c \,$ such that \[ f(x) \leq cx \] for every function $\, f \,$ satisfying (i)-(iii) and every $\, x \,$ in $\, [0,1]$.

2007 Iran MO (3rd Round), 3

Let $ I$ be incenter of triangle $ ABC$, $ M$ be midpoint of side $ BC$, and $ T$ be the intersection point of $ IM$ with incircle, in such a way that $ I$ is between $ M$ and $ T$. Prove that $ \angle BIM\minus{}\angle CIM\equal{}\frac{3}2(\angle B\minus{}\angle C)$, if and only if $ AT\perp BC$.

1984 Bulgaria National Olympiad, Problem 6

Let there be given a pyramid $SABCD$ whose base $ABCD$ is a parallelogram. Let $N$ be the midpoint of $BC$. A plane $\lambda$ intersects the lines $SC,SA,AB$ at points $P,Q,R$ respectively such that $\overline{CP}/\overline{CS}=\overline{SQ}/\overline{SA}=\overline{AR}/\overline{AB}$. A point $M$ on the line $SD$ is such that the line $MN$ is parallel to $\lambda$. Show that the locus of points $M$, when $\lambda$ takes all possible positions, is a segment of the length $\frac{\sqrt5}2SD$.

1997 Akdeniz University MO, 5

An $ABC$ triangle divide by a $d$ line such that, new two pieces' areas and perimeters are equal. Prove that $ABC$'s incenter lies $d$

MIPT student olimpiad autumn 2022, 1

Tags: topology
Prove that if a function $f:R \to R$ is bounded and its graph is closed as subset of the $R^2$ plane, then the function f is continuous.

2013 Stanford Mathematics Tournament, 8

Tags: geometry
Let equilateral triangle $ABC$ with side length $6$ be inscribed in a circle and let $P$ be on arc $AC$ such that $AP \cdot P C = 10$. Find the length of $BP$.