This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2012 Princeton University Math Competition, B1

Your friend sitting to your left (or right?) is unable to solve any of the eight problems on his or her Combinatorics $B$ test, and decides to guess random answers to each of them. To your astonishment, your friend manages to get two of the answers correct. Assuming your friend has equal probability of guessing each of the questions correctly, what is the average possible value of your friend’s score? Recall that each question is worth the point value shown at the beginning of each question.

2007 Iran Team Selection Test, 3

Tags: algebra
Find all solutions of the following functional equation: \[f(x^{2}+y+f(y))=2y+f(x)^{2}. \]

2007 Estonia Team Selection Test, 4

In square $ABCD,$ points $E$ and $F$ are chosen in the interior of sides $BC$ and $CD$, respectively. The line drawn from $F$ perpendicular to $AE$ passes through the intersection point $G$ of $AE$ and diagonal $BD$. A point $K$ is chosen on $FG$ such that $|AK|= |EF|$. Find $\angle EKF.$

2017 VTRMC, 1

Tags: number
Determine the number of real solutions to the equation $\sqrt{2 -x^2} = \sqrt[3]{3 -x^3}.$

2015 Sharygin Geometry Olympiad, 1

Circles $\alpha$ and $\beta$ pass through point $C$. The tangent to $\alpha$ at this point meets $\beta$ at point $B$, and the tangent to $\beta$ at $C$ meets $\alpha$ at point $A$ so that $A$ and $B$ are distinct from $C$ and angle $ACB$ is obtuse. Line $AB$ meets $\alpha$ and $\beta$ for the second time at points $N$ and $M$ respectively. Prove that $2MN < AB$. (D. Mukhin)

1979 IMO Longlists, 67

A circle $C$ with center $O$ on base $BC$ of an isosceles triangle $ABC$ is tangent to the equal sides $AB,AC$. If point $P$ on $AB$ and point $Q$ on $AC$ are selected such that $PB \times CQ = (\frac{BC}{2})^2$, prove that line segment $PQ$ is tangent to circle $C$, and prove the converse.

2016 Korea Winter Program Practice Test, 1

Solve: $a, b, m, n\in \mathbb{N}$ $a^2+b^2=m^2-n^2, ab=2mn$

2022 Yasinsky Geometry Olympiad, 3

Given a triangle $ABC$, in which the medians $BE$ and $CF$ are perpendicular. Let $M$ is the intersection point of the medians of this triangle, and $L$ is its Lemoine point (the intersection point of lines symmetrical to the medians with respect to the bisectors of the corresponding angles). Prove that $ML \perp BC$. (Mykhailo Sydorenko)

2022 JBMO TST - Turkey, 2

For a real number $a$, $[a]$ denotes the largest integer not exceeding $a$. Find all positive real numbers $x$ satisfying the equation $$x\cdot [x]+2022=[x^2]$$

1990 China Team Selection Test, 4

Tags: function , algebra
Number $a$ is such that $\forall a_1, a_2, a_3, a_4 \in \mathbb{R}$, there are integers $k_1, k_2, k_3, k_4$ such that $\sum_{1 \leq i < j \leq 4} ((a_i - k_i) - (a_j - k_j))^2 \leq a$. Find the minimum of $a$.

2010 Sharygin Geometry Olympiad, 9

Tags: geometry
A point inside a triangle is called "[i]good[/i]" if three cevians passing through it are equal. Assume for an isosceles triangle $ABC \ (AB=BC)$ the total number of "[i]good[/i]" points is odd. Find all possible values of this number.

2014 Contests, Problem 1

Tags: function
Let $g:[2013,2014]\to\mathbb{R}$ a function that satisfy the following two conditions: i) $g(2013)=g(2014) = 0,$ ii) for any $a,b \in [2013,2014]$ it hold that $g\left(\frac{a+b}{2}\right) \leq g(a) + g(b).$ Prove that $g$ has zeros in any open subinterval $(c,d) \subset[2013,2014].$

2006 Sharygin Geometry Olympiad, 16

Regular triangles are built on the sides of the triangle $ABC$. It turned out that their vertices form a regular triangle. Is the original triangle regular also?

2005 Morocco TST, 4

Let $ABCD$ be a cyclic qudrilaterlal such that $AB.BC=2.CD.DA$ Prove that $8.BD^2 \leq 9.AC^2$

2020 Lusophon Mathematical Olympiad, 3

Let $ABC$ be a triangle and on the sides we draw, externally, the squares $BADE, CBFG$ and $ACHI$. Determine the greatest positive real constant $k$ such that, for any triangle $\triangle ABC$, the following inequality is true: $[DEFGHI]\geq k\cdot [ABC]$ Note: $[X]$ denotes the area of polygon $X$.

2011 Today's Calculation Of Integral, 760

Prove that there exists a positive integer $n$ such that $\int_0^1 x\sin\ (x^2-x+1)dx\geq \frac {n}{n+1}\sin \frac{n+2}{n+3}.$

2010 Gheorghe Vranceanu, 2

Find all polynomials $ P $ with integer coefficients that have the property that for any natural number $ n $ the polynomial $ P-n $ has at least a root whose square is integer.

2017 Kazakhstan National Olympiad, 1

Tags: geometry
The non-isosceles triangle $ABC$ is inscribed in the circle $\omega$. The tangent line to this circle at the point $C$ intersects the line $AB$ at the point $D$. Let the bisector of the angle $CDB$ intersect the segments $AC$ and $BC$ at the points $K$ and $L$, respectively. The point $M$ is on the side $AB$ such that $\frac{AK}{BL} = \frac{AM}{BM}$. Let the perpendiculars from the point $M$ to the straight lines $KL$ and $DC$ intersect the lines $AC$ and $DC$ at the points $P$ and $Q$ respectively. Prove that $2\angle CQP=\angle ACB$

2008 IberoAmerican, 1

The integers from 1 to $ 2008^2$ are written on each square of a $ 2008 \times 2008$ board. For every row and column the difference between the maximum and minimum numbers is computed. Let $ S$ be the sum of these 4016 numbers. Find the greatest possible value of $ S$.

2006 AMC 10, 2

Tags:
For real numbers $ x$ and $ y$, define $ x\spadesuit y \equal{} (x \plus{} y)(x \minus{} y)$. What is $ 3\spadesuit(4\spadesuit 5)$? $ \textbf{(A) } \minus{} 72 \qquad \textbf{(B) } \minus{} 27 \qquad \textbf{(C) } \minus{} 24 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 72$

2007 Today's Calculation Of Integral, 181

For real number $a,$ find the minimum value of $\int_{0}^{\frac{\pi}{2}}\left|\frac{\sin 2x}{1+\sin^{2}x}-a\cos x\right| dx.$

2023 AMC 10, 9

The numbers $16$ and $25$ are a pair of consecutive perfect squares whose difference is $9$. How many pairs of consecutive positive perfect squares have a difference of less than or equal to $2023$? $\textbf{(A) } 674 \qquad \textbf{(B) } 1011 \qquad \textbf{(C) } 1010 \qquad \textbf{(D) } 2019 \qquad \textbf{(E) } 2017$

2022 Assara - South Russian Girl's MO, 4

Nadya has $2022$ cards, each with a number one or seven written on it. It is known that there are both cards.Nadya looked at all possible $2022$-digit numbers that can be composed from all these cards. What is the largest value that can take the greatest common divisor of all these numbers?

2002 May Olympiad, 5

Let $x$ and $y$ be positive integers we have a table $x\times y$ where $(x + 1)(y + 1)$ points are red(the points are the vertices of the squares). Initially there is one ant in each red point, in a moment the ants walk by the lines of the table with same speed, each turn that an ant arrive in a red point the ant moves $90º$ to some direction. Determine all values of $x$ and $y$ where is possible that the ants move indefinitely where can't be in any moment two ants in the same red point.

2020 Purple Comet Problems, 8

Tags: algebra
Camilla drove $20$ miles in the city at a constant speed and $40$ miles in the country at a constant speed that was $20$ miles per hour greater than her speed in the city. Her entire trip took one hour. Find the number of minutes that Camilla drove in the country rounded to the nearest minute.