Found problems: 85335
1969 IMO Shortlist, 3
$(BEL 3)$ Construct the circle that is tangent to three given circles.
2022 JBMO TST - Turkey, 6
Let $c$ be a real number. If the inequality
$$f(c)\cdot f(-c)\ge f(a)$$
holds for all $f(x)=x^2-2ax+b$ where $a$ and $b$ are arbitrary real numbers, find all possible values of $c$.
2001 All-Russian Olympiad, 2
The two polynomials $(x) =x^4+ax^3+bx^2+cx+d$ and $Q(x) = x^2+px+q$ take negative values on an interval $I$ of length greater than $2$, and nonnegative values outside of $I$. Prove that there exists $x_0 \in \mathbb R$ such that $P(x_0) < Q(x_0)$.
1984 All Soviet Union Mathematical Olympiad, 394
Prove that every cube's cross-section, containing its centre, has the area not less then its face's area.
2000 JBMO ShortLists, 11
Prove that for any integer $n$ one can find integers $a$ and $b$ such that
\[n=\left[ a\sqrt{2}\right]+\left[ b\sqrt{3}\right] \]
Kyiv City MO Juniors 2003+ geometry, 2016.8.5
In the triangle $ABC$ the angle bisectors $AD$ and $BE$ are drawn. Prove that $\angle ACB = 60 {} ^ \circ$ if and only if $AE + BD = AB$.
(Hilko Danilo)
2024 Thailand TST, 2
Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$.
Determine the smallest number of pieces Paul needs to make in order to accomplish this.
2021 Germany Team Selection Test, 2
For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$
2005 Purple Comet Problems, 2
Jerry is mowing a rectangular lawn which is $77$ feet north to south by $83$ feet east to west. His lawn mower cuts a path $18$ inches wide. Jerry mows the grass by cutting a path from west to east across the north side of the lawn and then making a right turn cutting a path along the east side of the lawn. When he completes mowing each side of the lawn, he continues by making right turns to mow a path along the next side. How many right turns will he make?
2022 BAMO, E/3
A polygon is called [i]convex[/i] if all its internal angles are smaller than 180$^{\circ}$. Given a convex polygon, prove that one can find three distinct vertices $A$, $P$, and $Q$, where $PQ$ is a side of the polygon, such that the perpendicular from $A$ to the line $PQ$ meets the segment $PQ$ (possible at $P$ of $Q$).
2021 Thailand Mathematical Olympiad, 2
Determine all sequences $a_1,a_2,a_3,\dots$ of positive integers that satisfy the equation
$$(n^2+1)a_{n+1} - a_n = n^3+n^2+1$$
for all positive integers $n$.
EMCC Accuracy Rounds, 2021
[b]p1.[/b] Evaluate $1^2 - 2^2 + 3^2 - 4^2 + ...+ 19^2 - 20^2 + 21^2$.
[b]p2.[/b] Kevin is playing in a table-tennis championship against Vincent. Kevin wins the championship if he wins two matches against Vincent, while Vincent must win three matches to win the championship. Given that both players have a $50\%$ chance of winning each match and there are no ties, the probability that Vincent loses the championship can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p3.[/b] For how many positive integers $n$ less than $2000$ is $n^{3n}$ a perfect fourth power?
[b]p4.[/b] Given that a coin of radius $\sqrt{3}$ cm is tossed randomly onto a plane tiled by regular hexagons of side length $14$ cm, the chance that it lands strictly inside of a hexagon can be written in the form $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$.
[b]p5.[/b] Given that $A,C,E,I, P,$ and $M$ are distinct nonzero digits such that $$EPIC + EMCC + AMC = PEACE,$$ what is the least possible value of $PEACE$?
[b]p6.[/b] A palindrome is a number that reads the same forwards and backwards. Call a number palindrome-ish if it is not a palindrome but we can make it a palindrome by changing one digit (we cannot change the first digit to zero). For instance, $4009$ is palindrome-ish because we can change the $4$ to a $9$. How many palindrome-ish four-digit numbers are there?
[b]p7.[/b] Given that the heights of triangle $ABC$ have lengths $\frac{15}{7}$ , $5$, and $3$, what is the square of the area of $ABC$?
[b]p8.[/b] Suppose that cubic polynomial $P(x)$ has leading coecient $1$ and three distinct real roots in the interval $[-20, 2]$. Given that the equation $P\left(x + \frac{1}{x} \right) = 0$ has exactly two distinct real solutions, the range of values that $P(3)$ can take is the open interval $(a, b)$. Compute $b - a$.
[b]p9.[/b] Vincent the Bug has $17$ students in his class lined up in a row. Every day, starting on January $1$, $2021$, he performs the same series of swaps between adjacent students. One example of a series of swaps is: swap the $4$th and the $5$th students, then swap the $2$nd and the $3$rd, then the $3$rd and the $4$th. He repeats this series of swaps every day until the students are in the same arrangement as on January $1$. What is the greatest number of days this process could take?
[b]p10.[/b] The summation $$\sum^{18}_{i=1}\frac{1}{i}$$ can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Compute the number of divisors of $b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1956 AMC 12/AHSME, 33
The number $ \sqrt {2}$ is equal to:
$ \textbf{(A)}\ \text{a rational fraction} \qquad\textbf{(B)}\ \text{a finite decimal} \qquad\textbf{(C)}\ 1.41421$
$ \textbf{(D)}\ \text{an infinite repeating decimal} \qquad\textbf{(E)}\ \text{an infinite non \minus{} repeating decimal}$
2005 iTest, 32
Find the shortest distance between the points $(3,5)$ and $(7,8)$.
1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 2
Let $ x,y,z$ natural numbers so that $ xyz \equal{} 78$ and $ x^2 \plus{} y^2 \plus{} z^2 \equal{} 206.$ What is $ x\plus{}y\plus{}z$?
A. 18
B. 20
C. 30
D. 42
E. None of these
2013 Saint Petersburg Mathematical Olympiad, 3
On a circle there are some black and white points (there are at least $12$ points). Each point has $10$ neighbors ($5$ left and $5$ right neighboring points), $5$ being black and $5$ white. Prove that the number of points on the circle is divisible by $4$.
II Soros Olympiad 1995 - 96 (Russia), 10.6
On sides $BC$, $CA$ and $AB$ of triangle $ABC$, points $A_1$, $B_1$, $C_1$ are taken, respectively, so that the radii of the circles inscribed in triangles $A_1BC_1$, $AB_1C_1$ and $A_1B_1C$ are equal to each other and equal to $r$. The radius of the circle inscribed in triangle $A_1B_1C_1$ is equal to $r_1$. Find the radius of the circle inscribed in triangle $ABC$.
2021 Final Mathematical Cup, 4
A number of $n$ lamps ($n\ge 3$) are put at $n$ vertices of a regular $n$-gon. Initially, all the lamps are off. In each step. Lisa will choose three lamps that are located at three vertices of an isosceles triangle and change their states (from off to on and vice versa). Her aim is to turn on all the lamps. At least how many steps are required to do so?
1996 IMO Shortlist, 7
let $ V$ be a finitive set and $ g$ and $ f$ be two injective surjective functions from $ V$to$ V$.let $ T$ and $ S$ be two sets such that they are defined as following"
$ S \equal{} \{w \in V: f(f(w)) \equal{} g(g(w))\}$
$ T \equal{} \{w \in V: f(g(w)) \equal{} g(f(w))\}$
we know that $ S \cup T \equal{} V$, prove:
for each $ w \in V : f(w) \in S$ if and only if $ g(w) \in S$
Russian TST 2018, P2
An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have
$$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$
Find the largest constant $K = K(n)$ such that
$$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$
holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.
2011 ELMO Shortlist, 4
Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$.
[i]Calvin Deng.[/i]
2020 AIME Problems, 10
Find the sum of all positive integers $n$ such that when $1^3+2^3+3^3+\cdots+n^3$ is divided by $n+5$, the remainder is $17.$
2009 Flanders Math Olympiad, 1
In an attempt to beat the Belgian handshake record come on $20/09/2009$ exactly $2009$ Belgians together in a large sports hall. Among them are Nathalie and thomas. During this event, everyone shakes hands with everyone exactly once other attendees. Afterwards, Nathalie says: “I have exactly $5$ times as many Flemish people shaken hands as people from Brussels.” Thomas replies with “I have exactly $3$ times as much Walloons and Brussels people shook hands”. From which region does Nathalie come and from which region comes Thomas?
1997 Belarusian National Olympiad, 3
$$Problem 3:$$ Is it possible to mark 10 red, 10 blue and 10 green points on a plane such that:
For each red point A, the point (among the marked ones) closest to A is blue; for each blue point B, the point closest to B is green; and for each green point C, the point closest to C is red?
2017 Iran Team Selection Test, 6
Let $k>1$ be an integer. The sequence $a_1,a_2, \cdots$ is defined as:
$a_1=1, a_2=k$ and for all $n>1$ we have: $a_{n+1}-(k+1)a_n+a_{n-1}=0$
Find all positive integers $n$ such that $a_n$ is a power of $k$.
[i]Proposed by Amirhossein Pooya[/i]