This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 ELMO Shortlist, 3

For each integer $C>1$ decide whether there exist pairwise distinct positive integers $a_1,a_2,a_3,...$ such that for every $k\ge 1$, $a_{k+1}^k$ divides $C^ka_1a_2...a_k$. [i]Proposed by Daniel Liu

2007 Vietnam Team Selection Test, 5

Let $A\subset \{1,2,\ldots,4014\}$, $|A|=2007$, such that $a$ does not divide $b$ for all distinct elements $a,b\in A$. For a set $X$ as above let us denote with $m_{X}$ the smallest element in $X$. Find $\min m_{A}$ (for all $A$ with the above properties).

2013 European Mathematical Cup, 2

Palindrome is a sequence of digits which doesn't change if we reverse the order of its digits. Prove that a sequence $(x_n)^{\infty}_{n=0}$ defined as $x_n=2013+317n$ contains infinitely many numbers with their decimal expansions being palindromes.

2012 ELMO Problems, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

1950 AMC 12/AHSME, 28

Tags:
Two boys $A$ and $B$ start at the same time to ride from Port Jervis to Poughkeepsie, $60$ miles away. $A$ travels $4$ miles an hour slower than $B$. $B$ reaches Poughkeepsie and at once turns back meeting $A$ $12$ miles from Poughkeepsie. The rate of $A$ was: $\textbf{(A)}\ 4\text{ mph}\qquad \textbf{(B)}\ 8\text{ mph} \qquad \textbf{(C)}\ 12\text{ mph} \qquad \textbf{(D)}\ 16\text{ mph} \qquad \textbf{(E)}\ 20\text{ mph}$

2016 CMIMC, 2

For each integer $n\geq 1$, let $S_n$ be the set of integers $k > n$ such that $k$ divides $30n-1$. How many elements of the set \[\mathcal{S} = \bigcup_{i\geq 1}S_i = S_1\cup S_2\cup S_3\cup\ldots\] are less than $2016$?

2021 CIIM, 1

For every $0 < \alpha < 1$, let $R(\alpha)$ be the region in $\mathbb{R}^2$ whose boundary is the convex pentagon of vertices $(0,1-\alpha), (\alpha, 0), (1, 0), (1,1)$ and $(0, 1)$. Let $R$ be the set of points that belong simultaneously to each of the regions $R(\alpha)$ with $0 < \alpha < 1$, that is, $R =\bigcap_{0<\alpha<1} R(\alpha)$. Determine the area of $R$.

2018 Ukraine Team Selection Test, 12

Let $n$ be a positive integer and $a_1,a_2,\dots,a_n$ be integers. Function $f: \mathbb{Z} \rightarrow \mathbb{R}$ is such that for all integers $k$ and $l$, $l \neq 0$, $$\sum_{i=1}^n f(k+a_il)=0.$$ Prove that $f \equiv 0$.

2005 Gheorghe Vranceanu, 3

Within an arithmetic progression of length $ 2005, $ find the number of arithmetic subprogressions of length $ 501 $ that don't contain the $ \text{1000-th} $ term of the progression.

1999 Harvard-MIT Mathematics Tournament, 1

Tags: geometry
Two $10 \times 24$ rectangles are inscribed in a circle as shown. Find the shaded area. [img]https://cdn.artofproblemsolving.com/attachments/1/7/c97fb0e6f45a52fa751777da6ebc519839e379.png[/img]

2022 Junior Balkan Team Selection Tests - Moldova, 1

Tags: algebra
Solve in the set $R$ the equation $$\frac{3x+3}{\sqrt{x}}-\frac{x+1}{\sqrt{x^2-x+1}}=4$$

2016 IMO, 3

Let $P=A_1A_2\cdots A_k$ be a convex polygon in the plane. The vertices $A_1, A_2, \ldots, A_k$ have integral coordinates and lie on a circle. Let $S$ be the area of $P$. An odd positive integer $n$ is given such that the squares of the side lengths of $P$ are integers divisible by $n$. Prove that $2S$ is an integer divisible by $n$.

1988 Mexico National Olympiad, 1

In how many ways can one arrange seven white and five black balls in a line in such a way that there are no two neighboring black balls?

2012 Tournament of Towns, 3

In the parallelogram $ABCD$, the diagonal $AC$ touches the incircles of triangles $ABC$ and $ADC$ at $W$ and $Y$ respectively, and the diagonal $BD$ touches the incircles of triangles $BAD$ and $BCD$ at $X$ and $Z$ respectively. Prove that either $W,X, Y$ and $Z$ coincide, or $WXYZ$ is a rectangle.

1974 Poland - Second Round, 6

There is a sequence of integers $ a_1, a_2, \ldots, a_{2n+1} $ with the following property: after eliminating any term, the remaining ones can be divided into two groups of $ n $ terms such that the sum of the terms in the first group is equal to the sum words in the second. Prove that all terms of the sequence are equal.

1977 AMC 12/AHSME, 19

Let $E$ be the point of intersection of the diagonals of convex quadrilateral $ABCD$, and let $P,Q,R,$ and $S$ be the centers of the circles circumscribing triangles $ABE,$ $BCE$, $CDE$, and $ADE$, respectively. Then $\textbf{(A) }PQRS\text{ is a parallelogram}$ $\textbf{(B) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rhombus}$ $\textbf{(C) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rectangle}$ $\textbf{(D) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a parallelogram}$ $\textbf{(E) }\text{none of the above are true}$

2012 Germany Team Selection Test, 1

Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20. [i]Proposed by Luxembourg[/i]

2001 Moldova National Olympiad, Problem 3

Tags: geometry
A line $d_i~(i=1,2,3)$ intersects two opposite sides of a square $ABCD$ at points $M_i$ and $N_i$. Prove that if $M_1N_1=M_2N_2=M_3N_3$, then two of the lines $d_i$ are either parallel or perpendicular.

2011 Korea - Final Round, 1

Prove that there is no positive integers $x,y,z$ satisfying \[ x^2 y^4 - x^4 y^2 + 4x^2 y^2 z^2 +x^2 z^4 -y^2 z^4 =0 \]

2003 Singapore Team Selection Test, 1

Let $A = \{3 + 10k, 6 + 26k, 5 + 29k, k = 1, 2, 3, 4, ...\}$. Determine the smallest positive integer $r$ such that there exists an integer $b$ with the property that the set $B = \{b + rk, k = 1, 2, 3, 4, ...\}$ is disjoint from $A$.

2018 Online Math Open Problems, 11

Tags:
Let an ordered pair of positive integers $(m, n)$ be called [i]regimented[/i] if for all nonnegative integers $k$, the numbers $m^k$ and $n^k$ have the same number of positive integer divisors. Let $N$ be the smallest positive integer such that $\left(2016^{2016}, N\right)$ is regimented. Compute the largest positive integer $v$ such that $2^v$ divides the difference $2016^{2016}-N$. [i]Proposed by Ashwin Sah[/i]

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2016 AIME Problems, 3

Tags: icosahedron
A [i]regular icosahedron[/i] is a $20$-faced solid where each face is an equilateral triangle and five triangles meet at every vertex. The regular icosahedron shown below has one vertex at the top, one vertex at the bottom, an upper pentagon of five vertices all adjacent to the top vertex and all in the same horizontal plane, and a lower pentagon of five vertices all adjacent to the bottom vertex and all in another horizontal plane. Find the number of paths from the top vertex to the bottom vertex such that each part of a path goes downward or horizontally along an edge of the icosahedron, and no vertex is repeated.[asy] size(3cm); pair A=(0.05,0),B=(-.9,-0.6),C=(0,-0.45),D=(.9,-0.6),E=(.55,-0.85),F=(-0.55,-0.85),G=B-(0,1.1),H=F-(0,0.6),I=E-(0,0.6),J=D-(0,1.1),K=C-(0,1.4),L=C+K-A; draw(A--B--F--E--D--A--E--A--F--A^^B--G--F--K--G--L--J--K--E--J--D--J--L--K); draw(B--C--D--C--A--C--H--I--C--H--G--H--L--I--J--I--D^^H--B,dashed); dot(A^^B^^C^^D^^E^^F^^G^^H^^I^^J^^K^^L); [/asy]

2011 National Olympiad First Round, 32

Tags:
Two players are playing a game with $n$ pieces. At each turn, the player takes $2^i$ pieces where $i \geq 0$. The player who takes the last piece will win the game. If the game is played for each $n=1000, 2000, 2011, 3000, 4000$ once, in how many of them the first player can guarantee to win? $\textbf{(A)}\ 4 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None}$

2013 Brazil Team Selection Test, 1

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.