This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Tournament Of Towns, 6

Each cell of a $1000\times 1000$ table contains $0$ or $1$. Prove that one can either cut out $990$ rows so that at least one $1$ remains in each column, or cut out $990$ columns so that at least one $0$ remains in each row.

2018 NZMOC Camp Selection Problems, 10

Find all functions $f : R \to R$ such that $$f(x)f(y) = f(xy + 1) + f(x - y) - 2$$ for all $x, y \in R$.

2013 Online Math Open Problems, 27

Geodude wants to assign one of the integers $1,2,3,\ldots,11$ to each lattice point $(x,y,z)$ in a 3D Cartesian coordinate system. In how many ways can Geodude do this if for every lattice parallelogram $ABCD$, the positive difference between the sum of the numbers assigned to $A$ and $C$ and the sum of the numbers assigned to $B$ and $D$ must be a multiple of $11$? (A [i]lattice point[/i] is a point with all integer coordinates. A [i]lattice parallelogram[/i] is a parallelogram with all four vertices lying on lattice points. Here, we say four not necessarily distinct points $A,B,C,D$ form a [i]parallelogram[/i] $ABCD$ if and only if the midpoint of segment $AC$ coincides with the midpoint of segment $BD$.) [hide="Clarifications"] [list] [*] The ``positive difference'' between two real numbers $x$ and $y$ is the quantity $|x-y|$. Note that this may be zero. [*] The last sentence was added to remove confusion about ``degenerate parallelograms.''[/list][/hide] [i]Victor Wang[/i]

2010 IFYM, Sozopol, 3

Let $ ABC$ is a triangle, let $ H$ is orthocenter of $ \triangle ABC$, let $ M$ is midpoint of $ BC$. Let $ (d)$ is a line perpendicular with $ HM$ at point $ H$. Let $ (d)$ meet $ AB, AC$ at $ E, F$ respectively. Prove that $ HE \equal{}HF$.

2002 Tournament Of Towns, 5

Let $AA_1,BB_1,CC_1$ be the altitudes of acute $\Delta ABC$. Let $O_a,O_b,O_c$ be the incentres of $\Delta AB_1C_1,\Delta BC_1A_1,\Delta CA_1B_1$ respectively. Also let $T_a,T_b,T_c$ be the points of tangency of the incircle of $\Delta ABC$ with $BC,CA,AB$ respectively. Prove that $T_aO_cT_bO_aT_cO_b$ is an equilateral hexagon.

2011 AMC 10, 10

Tags: ratio
Consider the set of numbers $\{1,10,10^2,10^3, ... 10^{10} \}$. The ratio of the largest element of the set to the sum of the other ten elements of the set is closest to which integer? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 101 $

2017 Azerbaijan Senior National Olympiad, A1

Solve the system of equation for $(x,y) \in \mathbb{R}$ $$\left\{\begin{matrix} \sqrt{x^2+y^2}+\sqrt{(x-4)^2+(y-3)^2}=5\\ 3x^2+4xy=24 \end{matrix}\right.$$ \\ Explain your answer

2012 Mexico National Olympiad, 1

Let $\mathcal{C}_1$ be a circumference with center $O$, $P$ a point on it and $\ell$ the line tangent to $\mathcal{C}_1$ at $P$. Consider a point $Q$ on $\ell$ different from $P$, and let $\mathcal{C}_2$ be the circumference passing through $O$, $P$ and $Q$. Segment $OQ$ cuts $\mathcal{C}_1$ at $S$ and line $PS$ cuts $\mathcal{C}_2$ at a point $R$ diffferent from $P$. If $r_1$ and $r_2$ are the radii of $\mathcal{C}_1$ and $\mathcal{C}_2$ respectively, Prove \[\frac{PS}{SR} = \frac{r_1}{r_2}.\]

2015 ASDAN Math Tournament, 12

Tags: team test
Find the smallest positive integer solution to the equation $2^{2^k}\equiv k\pmod{29}$.

2011 Middle European Mathematical Olympiad, 6

Let $ABC$ be an acute triangle. Denote by $B_0$ and $C_0$ the feet of the altitudes from vertices $B$ and $C$, respectively. Let $X$ be a point inside the triangle $ABC$ such that the line $BX$ is tangent to the circumcircle of the triangle $AXC_0$ and the line $CX$ is tangent to the circumcircle of the triangle $AXB_0$. Show that the line $AX$ is perpendicular to $BC$.

1970 IMO, 1

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2008 Estonia Team Selection Test, 2

Let $ABCD$ be a cyclic quadrangle whose midpoints of diagonals $AC$ and $BD$ are $F$ and $G$, respectively. a) Prove the following implication: if the bisectors of angles at $B$ and $D$ of the quadrangle intersect at diagonal $AC$ then $\frac14 \cdot |AC| \cdot |BD| = | AG| \cdot |BF| \cdot |CG| \cdot |DF|$. b) Does the converse implication also always hold?

Kyiv City MO Seniors 2003+ geometry, 2015.11.4

In the acute-angled triangle $ ABC $, the sides $ AB $ and $BC$ have different lengths, and the extension of the median $ BM $ intersects the circumscribed circle at the point $ N $. On this circle we note such a point $ D $ that $ \angle BDH = 90 {} ^ \circ $, where $ H $ is the point of intersection of the altitudes of the triangle $ ABC $. The point $K$ is chosen so that $ ANCK $ is a parallelogram. Prove that the lines $ AC $, $ KH $ and $ BD $ intersect at one point. (Igor Nagel)

1931 Eotvos Mathematical Competition, 1

Let $p$ be a prime greater than $2$. Prove that $\frac{2}{p}$ can be expressed in exactly one way in the form $$\frac{1}{x}+\frac{1}{y}$$ where $x$ and $y$ are positive integers with $x > y$.

2020 Princeton University Math Competition, A6/B8

Find the number of ordered pairs of integers $(x, y)$ such that $2167$ divides $3x^2 + 27y^2 + 2021$ with $0 \le x, y \le 2166$.

2020 BMT Fall, 2

There are $38$ people in the California Baseball League (CBL). The CBL cannot start playing games until people are split into teams of exactly $9$ people (with each person in exactly one team). Moreover, there must be an even number of teams. What is the fewest number of people who must join the CBL such that the CBL can start playing games? The CBL may not revoke membership of the $38$ people already in the CBL.

2007 Peru Iberoamerican Team Selection Test, P3

Tags: geometry
We have an acute triangle $ABC$. Consider the square $A_1A_2A_3A_4$ which has one vertex in $AB$, one vertex in $AC$ and two vertices ($A_1$ and $A_2$) in $BC$ and let $x_A=\angle A_1AA_2$. Analogously we define $x_B$ and $x_C$. Prove that $x_A+x_B+x_C=90$

2015 ASDAN Math Tournament, 10

Tags:
Alice, Bob, and Conway are playing rock-paper-scissors. Each player plays against each of the other $2$ players and each pair plays until a winner is decided (i.e. in the event of a tie, they play again). What is the probability that each player wins exactly once?

2009 India IMO Training Camp, 6

Prove The Following identity: $ \sum_{j \equal{} 0}^n \left ({3n \plus{} 2 \minus{} j \choose j}2^j \minus{} {3n \plus{} 1 \minus{} j \choose j \minus{} 1}2^{j \minus{} 1}\right ) \equal{} 2^{3n}$. The Second term on left hand side is to be regarded zero for j=0.

2009 Austria Beginners' Competition, 2

Let $x$ and $y$ be nonnegative real numbers. Prove that $(x +y^3) (x^3 +y) \ge 4x^2y^2$. When does equality holds? (Task committee)

2007 Mongolian Mathematical Olympiad, Problem 6

Let $n=p_1^{\alpha_1}\cdots p_s^{\alpha_s}\ge2$. If for any $\alpha\in\mathbb N$, $p_i-1\nmid\alpha$, where $i=1,2,\ldots,s$, prove that $n\mid\sum_{\alpha\in\mathbb Z^*_n}\alpha^{\alpha}$ where $\mathbb Z^*_n=\{a\in\mathbb Z_n:\gcd(a,n)=1\}$.

2014 Canadian Mathematical Olympiad Qualification, 8

For any given non-negative integer $m$, let $f(m)$ be the number of $1$'s in the base $2$ representation of $m$. Let $n$ be a positive integer. Prove that the integer $$\sum^{2^n - 1}_{m = 0} \Big( (-1)^{f(m)} \cdot 2^m \Big)$$ contains at least $n!$ positive divisors.

2020 Yasinsky Geometry Olympiad, 2

An equilateral triangle $BDE$ is constructed on the diagonal $BD$ of the square $ABCD$, and the point $C$ is located inside the triangle $BDE$. Let $M$ be the midpoint of $BE$. Find the angle between the lines $MC$ and $DE$. (Dmitry Shvetsov)

2018 Tuymaada Olympiad, 5

$99$ identical balls lie on a table. $50$ balls are made of copper, and $49$ balls are made of zinc. The assistant numbered the balls. Once spectrometer test is applied to $2$ balls and allows to determine whether they are made of the same metal or not. However, the results of the test can be obtained only the next day. What minimum number of tests is required to determine the material of each ball if all the tests should be performed today? [i]Proposed by N. Vlasova, S. Berlov[/i]

2003 Switzerland Team Selection Test, 10

Find all strictly monotonous functions $f : N \to N$ that satisfy $f(f(n)) = 3n$ for all $n \in N$.