This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2015 Puerto Rico Team Selection Test, 1

A sequence of natural numbers is written according to the following rule: [i] the first two numbers are chosen and thereafter, in order to write a new number, the sum of the last numbers is calculated using the two written numbers, we find the greatest odd divisor of their sum and the sum of this greatest odd divisor plus one is the following written number. [/i]The first numbers are $25$ and $126$ (in that order), and the sequence has $2015$ numbers. Find the last number written.

2009 VTRMC, Problem 1

Tags: rates , algebra
A walker and a jogger travel along the same straight line in the same direction. The walker walks at one meter per second, while the jogger runs at two meters per second. The jogger starts one meter in front of the walker. A dog starts with the walker, and then runs back and forth between the walker and the jogger with constant speed of three meters per second. Let $f(n)$ meters denote the total distance travelled by the dog when it has returned to the walker for the nth time (so $f(0)=0$). Find a formula for $f(n)$.

2019 Taiwan APMO Preliminary Test, P5

Find the minimum positive integer $n$ such that for any set $A$ with $n$ positive intergers has $15$ elements which sum is divisible by $15$.

2021 Canada National Olympiad, 4

A function $f$ from the positive integers to the positive integers is called [i]Canadian[/i] if it satisfies $$\gcd\left(f(f(x)), f(x+y)\right)=\gcd(x, y)$$ for all pairs of positive integers $x$ and $y$. Find all positive integers $m$ such that $f(m)=m$ for all Canadian functions $f$.

2017 CHMMC (Fall), 2

Let $N$ be the number of sequences $a_1, a_2, . . . , a_{10}$ of ten positive integers such that (i) the value of each term of the sequence at most $30$, (ii) the arithmetic mean of any three consecutive terms of the sequence is an integer, and (iii) the arithmetic mean of any fi ve consecutive terms of the sequence is an integer. Compute $\sqrt{N}$.

2021 Sharygin Geometry Olympiad, 23

Six points in general position are given in the space. For each two of them color red the common points (if they exist) of the segment between these points and the surface of the tetrahedron formed by four remaining points. Prove that the number of red points is even.

2016 Peru Cono Sur TST, P6

Two circles $\omega_1$ and $\omega_2$, which have centers $O_1$ and $O_2$, respectively, intersect at $A$ and $B$. A line $\ell$ that passes through $B$ cuts to $\omega_1$ again at $C$ and cuts to $\omega_2$ again in $D$, so that points $C, B, D$ appear in that order. The tangents of $\omega_1$ and $\omega_2$ in $C$ and $D$, respectively, intersect in $E$. Line $AE$ intersects again to the circumscribed circumference of the triangle $AO_1O_2$ in $F$. Try that the length of the $EF$ segment is constant, that is, it does not depend on the choice of $\ell$.

1983 Austrian-Polish Competition, 8

(a) Prove that $(2^{n+1}-1)!$ is divisible by $ \prod_{i=0}^n (2^{n+1-i}-1)^{2^i }$, for every natural number n (b) Define the sequence ($c_n$) by $c_1=1$ and $c_{n}=\frac{4n-6}{n}c_{n-1}$ for $n\ge 2$. Show that each $c_n$ is an integer.

2016 Dutch IMO TST, 1

Prove that for all positive reals $a, b,c$ we have: $a +\sqrt{ab}+ \sqrt[3]{abc}\le \frac43 (a + b + c)$

2021 Estonia Team Selection Test, 1

The board has a natural number greater than $1$. At each step, Igor writes the number $n +\frac{n}{p}$ instead of the number $n$ on the board , where $p$ is some prime divisor of $n$. Prove that if Igor continues to rewrite the number infinite times, then he will choose infinitely times the number $3$ as a prime divisor of $p$. [hide=original wording]На доске записано какое-то натуральное число, большее 1. На каждом шагу Игорь переписывает имеющееся на доске число n на число n +n/p, где p - это какой-нибудь простой делитель числа n. Доказать, что если Игорь будет продолжать переписывать число бесконечно долго, то он бесконечно много раз выберет в качестве простого делителя p число 3.[/hide]

2014 LMT, Individual

[b]p1.[/b] What is $6\times 7 + 4 \times 7 + 6\times 3 + 4\times 3$? [b]p2.[/b] How many integers $n$ have exactly $\sqrt{n}$ factors? [b]p3.[/b] A triangle has distinct angles $3x+10$, $2x+20$, and $x+30$. What is the value of $x$? [b]p4.[/b] If $4$ people of the Math Club are randomly chosen to be captains, and Henry is one of the $30$ people eligible to be chosen, what is the probability that he is not chosen to be captain? [b]p5.[/b] $a, b, c, d$ is an arithmetic sequence with difference $x$ such that $a, c, d$ is a geometric sequence. If $b$ is $12$, what is $x$? (Note: the difference of an aritmetic sequence can be positive or negative, but not $0$) [b]p6.[/b] What is the smallest positive integer that contains only $0$s and $5$s that is a multiple of $24$. [b]p7.[/b] If $ABC$ is a triangle with side lengths $13$, $14$, and $15$, what is the area of the triangle made by connecting the points at the midpoints of its sides? [b]p8.[/b] How many ways are there to order the numbers $1,2,3,4,5,6,7,8$ such that $1$ and $8$ are not adjacent? [b]p9.[/b] Find all ordered triples of nonnegative integers $(x, y, z)$ such that $x + y + z = xyz$. [b]p10.[/b] Noah inscribes equilateral triangle $ABC$ with area $\sqrt3$ in a cricle. If $BR$ is a diameter of the circle, then what is the arc length of Noah's $ARC$? [b]p11.[/b] Today, $4/12/14$, is a palindromic date, because the number without slashes $41214$ is a palindrome. What is the last palindromic date before the year $3000$? [b]p12.[/b] Every other vertex of a regular hexagon is connected to form an equilateral triangle. What is the ratio of the area of the triangle to that of the hexagon? [b]p13.[/b] How many ways are there to pick four cards from a deck, none of which are the same suit or number as another, if order is not important? [b]p14.[/b] Find all functions $f$ from $R \to R$ such that $f(x + y) + f(x - y) = x^2 + y^2$. [b]p15.[/b] What are the last four digits of $1(1!) + 2(2!) + 3(3!) + ... + 2013(2013!)$/ [b]p16.[/b] In how many distinct ways can a regular octagon be divided up into $6$ non-overlapping triangles? [b]p17.[/b] Find the sum of the solutions to the equation $\frac{1}{x-3} + \frac{1}{x-5} + \frac{1}{x-7} + \frac{1}{x-9} = 2014$ . [b]p18.[/b] How many integers $n$ have the property that $(n+1)(n+2)(n+3)(n+4)$ is a perfect square of an integer? [b]p19.[/b] A quadrilateral is inscribed in a unit circle, and another one is circumscribed. What is the minimum possible area in between the two quadrilaterals? [b]p20.[/b] In blindfolded solitary tic-tac-toe, a player starts with a blank $3$-by-$3$ tic-tac-toe board. On each turn, he randomly places an "$X$" in one of the open spaces on the board. The game ends when the player gets $3$ $X$s in a row, in a column, or in a diagonal as per normal tic-tac-toe rules. (Note that only $X$s are used, not $O$s). What fraction of games will run the maximum $7$ amount of moves? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Malaysia National Olympiad, A6

A [i]semiprime [/i] is a positive integer that is a product of two prime numbers. For example, $9$ and $10$ are semiprimes. How many semiprimes less than $100$ are there?

2013 NIMO Problems, 3

In triangle $ABC$, $AB=13$, $BC=14$ and $CA=15$. Segment $BC$ is split into $n+1$ congruent segments by $n$ points. Among these points are the feet of the altitude, median, and angle bisector from $A$. Find the smallest possible value of $n$. [i]Proposed by Evan Chen[/i]

2005 AMC 8, 19

What is the perimeter of trapezoid $ ABCD$? [asy]defaultpen(linewidth(0.8));size(3inch, 1.5inch); pair a=(0,0), b=(18,24), c=(68,24), d=(75,0), f=(68,0), e=(18,0); draw(a--b--c--d--cycle); draw(b--e); draw(shift(0,2)*e--shift(2,2)*e--shift(2,0)*e); label("30", (9,12), W); label("50", (43,24), N); label("25", (71.5, 12), E); label("24", (18, 12), E); label("$A$", a, SW); label("$B$", b, N); label("$C$", c, N); label("$D$", d, SE); label("$E$", e, S);[/asy] $ \textbf{(A)}\ 180\qquad\textbf{(B)}\ 188\qquad\textbf{(C)}\ 196\qquad\textbf{(D)}\ 200\qquad\textbf{(E)}\ 204 $

2020 Bangladesh Mathematical Olympiad National, Problem 6

Tags: algebra , function
$f$ is a one-to-one function from the set of positive integers to itself such that $$f(xy) = f(x) × f(y)$$ Find the minimum possible value of $f(2020)$.

2008 Harvard-MIT Mathematics Tournament, 17

Tags:
Solve the equation \[ \sqrt {x \plus{} \sqrt {4x \plus{} \sqrt {16x \plus{} \sqrt {\dotsc \plus{} \sqrt {4^{2008}x \plus{} 3}}}}} \minus{} \sqrt {x} \equal{} 1. \] Express your answer as a reduced fraction with the numerator and denominator written in their prime factorization.

1997 IMO Shortlist, 8

It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU \equal{} TB \plus{} TC$. [i]Alternative formulation:[/i] Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that: (a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$ (b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.

1998 Estonia National Olympiad, 1

Prove that for any reals $a> b> c$, the inequality $a^2(b - c) + b^2(c - a) + c^2(a - b)> 0$.

2019 Singapore Senior Math Olympiad, 5

Determine all integer $n \ge 2$ such that it is possible to construct an $n * n$ array where each entry is either $-1, 0, 1$ so that the sums of elements in every row and every column are distinct

2017 Argentina National Olympiad, 3

Let $ABC$ be a triangle of perimeter $100$ and $I$ be the point of intersection of its bisectors. Let $M$ be the midpoint of side $BC$. The line parallel to $AB$ drawn by$ I$ cuts the median $AM$ at point $P$ so that $\frac{AP}{PM} =\frac73$. Find the length of side $AB$.

2019 India Regional Mathematical Olympiad, 4

Consider the following $3\times 2$ array formed by using the numbers $1,2,3,4,5,6$, $$\begin{pmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\\ a_{31}& a_{32}\end{pmatrix}=\begin{pmatrix}1& 6\\2& 5\\ 3& 4\end{pmatrix}.$$ Observe that all row sums are equal, but the sum of the square of the squares is not the same for each row. Extend the above array to a $3\times k$ array $(a_{ij})_{3\times k}$ for a suitable $k$, adding more columns, using the numbers $7,8,9,\dots ,3k$ such that $$\sum_{j=1}^k a_{1j}=\sum_{j=1}^k a_{2j}=\sum_{j=1}^k a_{3j}~~\text{and}~~\sum_{j=1}^k (a_{1j})^2=\sum_{j=1}^k (a_{2j})^2=\sum_{j=1}^k (a_{3j})^2$$

2005 Tournament of Towns, 1

Can two perfect cubes fit between two consecutive perfect squares? In other words, do there exist positive integers $a$, $b$, $n$ such that $n^2 < a^3 < b^3 < (n + 1)^2$? [i](3 points)[/i]

2013 Junior Balkan Team Selection Tests - Moldova, 5

The real numbers $a, b, c$ are positive, and the real numbers $p, q, r \in [0,1/2]$ satisfy equality $p + q + r = 1$. Prove the inequality $$pab + qbc + rca \le \frac18 (a + b + c)^2.$$

2017 HMNT, 3

Find the number of integers $n$ with $1 \le n \le 2017$ so that $(n-2)(n-0)(n-1)(n-7)$ is an integer multiple of $1001$.

2008 China Team Selection Test, 1

Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.