Found problems: 85335
2013 Cuba MO, 8
Prove that there are infinitely many pairs $(a, b)$ of positive integers with the following properties:
$\bullet$ $a+b$ divides $ab+1$,
$\bullet$ $a-b$ divides $ab -1$,
$\bullet$ $b > 2$ and $a > b\sqrt3 - 1$.
2011 Junior Balkan Team Selection Tests - Moldova, 5
The real numbers $a, b$ satisfy $| a | \ne | b |$ and $$ \frac{a + b}{a - b}+\frac{a - b}{a + b}= -\frac52.$$
Determine the value of the expression $$E= \frac{a^4 - b^4}{a^4 + b^4} - \frac{a^4 + b^4}{a^4- b^4}.$$
1993 Austrian-Polish Competition, 1
Solve in positive integers $x,y$ the equation $2^x - 3^y = 7$.
1987 Nordic, 2
Let $ABCD$ be a parallelogram in the plane. We draw two circles of radius $R$, one through the points $A$ and
$B$, the other through $B$ and $C$. Let $E$ be the other intersection point of the circles. We assume that $E$ is not a vertex of the parallelogram. Show that the circle passing through $A, D$, and $E$ also has radius $R$.
MBMT Team Rounds, 2017
[hide=R stands for Ramanujan , P stands for Pascal]they had two problem sets under those two names[/hide]
[b]R1.[/b] What is $11^2 - 9^2$?
[b]R2.[/b] Write $\frac{9}{15}$ as a decimal.
[b]R3.[/b] A $90^o$ sector of a circle is shaded, as shown below. What percent of the circle is shaded?
[b]R4.[/b] A fair coin is flipped twice. What is the probability that the results of the two flips are different?
[b]R5.[/b] Wayne Dodson has $55$ pounds of tungsten. If each ounce of tungsten is worth $75$ cents, and there are $16$ ounces in a pound, how much money, in dollars, is Wayne Dodson’s tungsten worth?
[b]R6.[/b] Tenley Towne has a collection of $28$ sticks. With these $28$ sticks he can build a tower that has $1$ stick in the top row, $2$ in the next row, and so on. Let $n$ be the largest number of rows that Tenley Towne’s tower can have. What is n?
[b]R7.[/b] What is the sum of the four smallest primes?
[b]R8 / P1.[/b] Let $ABC$ be an isosceles triangle such that $\angle B = 42^o$. What is the sum of all possible degree measures of angle $A$?
[b]R9.[/b] Consider a line passing through $(0, 0)$ and $(4, 8)$. This line passes through the point $(2, a)$. What is the value of $a$?
[b]R10 / P2.[/b] Brian and Stan are playing a game. In this game, Brian rolls a fair six-sided die, while Stan rolls a fair four-sided die. Neither person shows the other what number they rolled. Brian tells Stan, “The number I rolled is guaranteed to be higher than the number you rolled.” Stan now has to guess Brian’s number. If Stan plays optimally, what is the probability that Stan correctly guesses the number that Brian rolled?
[b]R11.[/b] Guang chooses $4$ distinct integers between $0$ and $9$, inclusive. How many ways can he choose the integers such that every pair of chosen integers sums up to an even number?
[b]R12 / P4.[/b] David is trying to write a problem for MBMT. He assigns degree measures to every interior angle in a convex $n$-gon, and it so happens that every angle he assigned is less than $144$ degrees. He tells Pratik the value of $n$ and the degree measures in the $n$-gon, and to David’s dismay, Pratik claims that such an $n$-gon does not exist. What is the smallest value of $n \ge 3$ such that Pratik’s claim is necessarily true?
[b]R13 / P3.[/b] Consider a triangle $ABC$ with side lengths of $5$, $5$, and $2\sqrt5$. There exists a triangle with side lengths of $5, 5$, and $x$ ($x \ne 2\sqrt5$) which has the same area as $ABC$. What is the value of $x$?
[b]R14 / P5.[/b] A mother has $11$ identical apples and $9$ identical bananas to distribute among her $3$ kids. In how many ways can the fruits be allocated so that each child gets at least one apple and one banana?
[b]R15 / P7.[/b] Find the sum of the five smallest positive integers that cannot be represented as the sum of two not necessarily distinct primes.
[b]P6.[/b] Srinivasa Ramanujan has the polynomial $P(x) = x^5 - 3x^4 - 5x^3 + 15x^2 + 4x - 12$. His friend Hardy tells him that $3$ is one of the roots of $P(x)$. What is the sum of the other roots of $P(x)$?
[b]P8.[/b] $ABC$ is an equilateral triangle with side length $10$. Let $P$ be a point which lies on ray $\overrightarrow{BC}$ such that $PB = 20$. Compute the ratio $\frac{PA}{PC}$.
[b]P9.[/b] Let $ABC$ be a triangle such that $AB = 10$, $BC = 14$, and $AC = 6$. The median $CD$ and angle bisector $CE$ are both drawn to side $AB$. What is the ratio of the area of triangle $CDE$ to the area of triangle $ABC$?
[b]P10.[/b] Find all integer values of $x$ between $0$ and $2017$ inclusive, which satisfy $$2016x^{2017} + 990x^{2016} + 2x + 17 \equiv 0 \,\,\, (mod \,\,\, 2017).$$
[b]P11.[/b] Let $x^2 + ax + b$ be a quadratic polynomial with positive integer roots such that $a^2 - 2b = 97$. Compute $a + b$.
[b]P12.[/b] Let $S$ be the set $\{2, 3, ... , 14\}$. We assign a distinct number from $S$ to each side of a six-sided die. We say a numbering is predictable if prime numbers are always opposite prime numbers and composite numbers are always opposite composite numbers. How many predictable numberings are there? (Rotations of a die are not distinct)
[b]P13.[/b] In triangle $ABC$, $AB = 10$, $BC = 21$, and $AC = 17$. $D$ is the foot of the altitude from $A$ to $BC$, $E$ is the foot of the altitude from $D$ to $AB$, and $F$ is the foot of the altitude from $D$ to $AC$. Find the area of the smallest circle that contains the quadrilateral $AEDF$.
[b]P14.[/b] What is the greatest distance between any two points on the graph of $3x^2 + 4y^2 + z^2 - 12x + 8y + 6z = -11$?
[b]P15.[/b] For a positive integer $n$, $\tau (n)$ is defined to be the number of positive divisors of $n$. Given this information, find the largest positive integer $n$ less than $1000$ such that $$\sum_{d|n} \tau (d) = 108.$$ In other words, we take the sum of $\tau (d)$ for every positive divisor $d$ of $n$, which has to be $108$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 HMNT, 26
A right rectangular prism of silly powder has dimensions $20 \times 24 \times 25.$ Jerry the wizard applies $10$ bouts of highdroxylation to the box, each of which increases one dimension of the silly powder by $1$ and decreases a different dimension of the silly powder by $1,$ with every possible choice of dimensions equally likely to be chosen and independent of all previous choices. Compute the expected volume of the silly powder after Jerry’s routine.
2017 AMC 12/AHSME, 13
Driving at a constant speed, Sharon usually takes $180$ minutes to drive from her house to her mother's house. One day Sharon begins the drive at her usual speed, but after driving $\frac{1}{3}$ of the way, she hits a bad snowstorm and reduces her speed by $20$ miles per hour. This time the trip takes her a total of $276$ minutes. How many miles is it from Sharon's house to her mother's house?
$\textbf{(A)}\ 132\qquad\textbf{(B)}\ 135\qquad\textbf{(C)}\ 138\qquad\textbf{(D)}\ 141\qquad\textbf{(E)}\ 144$
2021 BMT, 3
Let $x$ be a solution to the equation $\lfloor x \lfloor x + 2\rfloor + 2\rfloor = 10$. Compute the smallest $C$ such that for any solution $x$, $x < C$. Here, $\lfloor m \rfloor$ is defined as the greatest integer less than or equal to $m$. For example, $\lfloor 3\rfloor = 3$ and $\lfloor -4.25\rfloor = -5$.
1997 Moscow Mathematical Olympiad, 3
Inside acute $\angle{XOY},$ points $M$ and $N$ are taken so that $\angle{XON}=\angle{YOM}$. Point $Q$ is taken on segment $OX$ such that $\angle{NQO}=\angle{MQX}.$ Point $P$ is taken such that $\angle{NPO}=\angle{MPY}.$ Prove the lengths of the broken lines $MPN$ and $MQN$ are equal.
1998 Swedish Mathematical Competition, 6
Show that for some $c > 0$, we have $\left|\sqrt[3]{2} - \frac{m}{n}\right | > \frac{c}{n^3}$ for all integers $m, n$ with $n \ge 1$.
2017 Ukraine Team Selection Test, 9
There're two positive inegers $a_1<a_2$. For every positive integer $n \geq 3$ let $a_n$ be the smallest integer that bigger than $a_{n-1}$ and such that there's unique pair $1\leq i< j\leq n-1$ such that this number equals to $a_i+a_j$. Given that there're finitely many even numbers in this sequence. Prove that sequence $\{a_{n+1}-a_n \}$ is periodic starting from some element.
MOAA Team Rounds, 2021.19
Consider the $5$ by $5$ by $5$ equilateral triangular grid as shown:
[asy]
size(5cm);
real n = 5;
for (int i = 0; i < n; ++i) {
draw((0.5*i,0.866*i)--(n-0.5*i,0.866*i));
}
for (int i = 0; i < n; ++i) {
draw((n-i,0)--((n-i)/2,(n-i)*0.866));
}
for (int i = 0; i < n; ++i) {
draw((i,0)--((n+i)/2,(n-i)*0.866));
}
[/asy]
Ethan chooses two distinct upward-oriented equilateral triangles bounded by the gridlines. The probability that Ethan chooses two triangles that share exactly one vertex can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$.
[i]Proposed by Andrew Wen[/i]
2007 India IMO Training Camp, 1
A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula
\[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0;
\]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large.
[i]Proposed by Harmel Nestra, Estionia[/i]
2013 National Olympiad First Round, 9
Let $ABC$ be a triangle with $|AB|=18$, $|AC|=24$, and $m(\widehat{BAC}) = 150^\circ$. Let $D$, $E$, $F$ be points on sides $[AB]$, $[AC]$, $[BC]$, respectively, such that $|BD|=6$, $|CE|=8$, and $|CF|=2|BF|$. Let $H_1$, $H_2$, $H_3$ be the reflections of the orthocenter of triangle $ABC$ over the points $D$, $E$, $F$, respectively. What is the area of triangle $H_1H_2H_3$?
$
\textbf{(A)}\ 70
\qquad\textbf{(B)}\ 72
\qquad\textbf{(C)}\ 84
\qquad\textbf{(D)}\ 96
\qquad\textbf{(E)}\ 108
$
2016 Purple Comet Problems, 14
Find the number of positive integers $n$ such that a regular polygon with $n$ sides has internal angles with measures equal to an integer number of degrees.
2021 Science ON all problems, 4
Consider positive real numbers $x,y,z$. Prove the inequality
$$\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).$$
[i] (Vlad Robu \& Sergiu Novac)[/i]
2012 German National Olympiad, 3
Let $ABC$ a triangle and $k$ a circle such that:
(1) The circle $k$ passes through $A$ and $B$ and touches the line $AC.$
(2) The tangent to $k$ at $B$ intersects the line $AC$ in a point $X\ne C.$
(3) The circumcircle $\omega$ of $BXC$ intersects $k$ in a point $Q\ne B.$
(4) The tangent to $\omega$ at $X$ intersects the line $AB$ in a point $Y.$
Prove that the line $XY$ is tangent to the circumcircle of $BQY.$
2000 Czech And Slovak Olympiad IIIA, 3
In the plane are given $2000$ congruent triangles of area $1$, which are all images of one triangle under translations. Each of these triangles contains the centroid of every other triangle. Prove that the union of these triangles has area less than $22/9$.
2003 Junior Balkan Team Selection Tests - Romania, 3
Let $n$ be a positive integer. Prove that there are no positive integers $x$ and $y$ such as $\sqrt{n}+\sqrt{n+1} < \sqrt{x}+\sqrt{y} <\sqrt{4n+2} $
2020 Online Math Open Problems, 6
Alexis has $2020$ paintings, the $i$th one of which is a $1\times i$ rectangle for $i = 1, 2, \ldots, 2020$. Compute the smallest integer $n$ for which they can place all of the paintings onto an $n\times n$ mahogany table without overlapping or hanging off the table.
[i]Proposed by Brandon Wang[/i]
2008 Portugal MO, 4
Nelson challenges Telma for the following game:
First Telma takes $2^9$ numbers from the set $\left\{0,1,2,3,\cdots,1024\right\}$, then Nelson takes $2^8$ of the remaining numbers. Then Telma takes $2^7$ numbers and successively, until only two numbers remain. Nelson will have to give Telma the difference between these two numbers in euros. What is the largest amount Telma can win, whatever Nelson's strategy is?
2007 Ukraine Team Selection Test, 6
Find all primes $ p$ for that there is an integer $ n$ such that there are no integers $ x,y$ with $ x^3 \plus{} y^3 \equiv n \mod p$ (so not all residues are the sum of two cubes).
E.g. for $ p \equal{} 7$, one could set $ n \equal{} \pm 3$ since $ x^3,y^3 \equiv 0 , \pm 1 \mod 7$, thus $ x^3 \plus{} y^3 \equiv 0 , \pm 1 , \pm 2 \mod 7$ only.
2017 Sharygin Geometry Olympiad, 5
Let $BH_b, CH_c$ be altitudes of an acute-angled triangle $ABC$. The line $H_bH_c$ meets the circumcircle of $ABC$ at points $X$ and $Y$. Points $P,Q$ are the reflections of $X,Y$ about $AB,AC$ respectively. Prove that $PQ \parallel BC$.
[i]Proposed by Pavel Kozhevnikov[/i]
2016 AMC 8, 12
Jefferson Middle School has the same number of boys and girls. Three-fourths of the girls and two-thirds of the boys went on a field trip. What fraction of the students were girls?
$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}$
1991 Baltic Way, 16
Two circles $C_1$ and $C_2$ with radii $r_1$ and $r_2$ touch each other externally and both touch a line $l$. A circle $C_3$ with radius $r_3 < r_1, r_2$ is tangent to $l$ and externally to $C_1$ and $C_2$. Prove that
\[\frac{1}{\sqrt{r_3}}=\frac{1}{\sqrt{r_2}}+\frac{1}{\sqrt{r_2}}.\]