This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1957 AMC 12/AHSME, 3

Tags:
The simplest form of $ 1 \minus{} \frac{1}{1 \plus{} \frac{a}{1 \minus{} a}}$ is: $ \textbf{(A)}\ {a}\text{ if }{a\not\equal{} 0} \qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ {a}\text{ if }{a\not\equal{} \minus{}1}\qquad \textbf{(D)}\ {1 \minus{} a}\text{ with not restriction on }{a}\qquad \textbf{(E)}\ {a}\text{ if }{a\not\equal{} 1}$

1974 Chisinau City MO, 82

Is there a moment in a day when three hands - hour, minute and second - of a clock running correctly form angles of $120^o$ in pairs?

2009 Italy TST, 1

Let $n,k$ be positive integers such that $n\ge k$. $n$ lamps are placed on a circle, which are all off. In any step we can change the state of $k$ consecutive lamps. In the following three cases, how many states of lamps are there in all $2^n$ possible states that can be obtained from the initial state by a certain series of operations? i)$k$ is a prime number greater than $2$; ii) $k$ is odd; iii) $k$ is even.

2010 ELMO Shortlist, 7

The game of circulate is played with a deck of $kn$ cards each with a number in $1,2,\ldots,n$ such that there are $k$ cards with each number. First, $n$ piles numbered $1,2,\ldots,n$ of $k$ cards each are dealt out face down. The player then flips over a card from pile $1$, places that card face up at the bottom of the pile, then next flips over a card from the pile whose number matches the number on the card just flipped. The player repeats this until he reaches a pile in which every card has already been flipped and wins if at that point every card has been flipped. Hamster has grown tired of losing every time, so he decides to cheat. He looks at the piles beforehand and rearranges the $k$ cards in each pile as he pleases. When can Hamster perform this procedure such that he will win the game? [i]Brian Hamrick.[/i]

2001 National High School Mathematics League, 8

Complex numbers $z_1,z_2$ satisfy that $|z_1|=2,|z_2|=3,3z_1-2z_2=\frac{3}{2}-\text{i}$, then $z_1\cdot z_2=$________.

2017 Iran MO (2nd Round), 4

Let $x,y$ be two positive real numbers such that $x^4-y^4=x-y$. Prove that $$\frac{x-y}{x^6-y^6}\leq \frac{4}{3}(x+y).$$

2012 Dutch BxMO/EGMO TST, 5

Let $A$ be a set of positive integers having the following property: for each positive integer $n$ exactly one of the three numbers $n, 2n$ and $3n$ is an element of $A$. Furthermore, it is given that $2 \in A$. Prove that $13824 \notin A$.

2008 Junior Balkan Team Selection Tests - Moldova, 3

Rhombuses $ABCD$ and $A_1B_1C_1D_1$ are equal. Side $BC$ intersects sides $B_1C_1$ and $C_1D_1$ at points $M$ and $N$ respectively. Side $AD$ intersects sides $A_1B_1$ and $A_1D_1$ at points $Q$ and $P$ respectively. Let $O$ be the intersection point of lines $MP$ and $QN$. Find $\angle A_1B_1C_1$ , if $\angle QOP = \frac12 \angle B_1C_1D_1$.

2002 Baltic Way, 1

Solve the system of simultaneous equations \[\begin{cases}a^3+3ab^2+3ac^2-6abc=1\\ b^3+3ba^2+3bc^2-6abc=1\\c^3+3ca^2+3cb^2-6abc=1\end{cases}\] in real numbers.

1999 Turkey Team Selection Test, 2

Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.

1997 AMC 12/AHSME, 23

In the figure, polygons $ A$, $ E$, and $ F$ are isosceles right triangles; $ B$, $ C$, and $ D$ are squares with sides of length $ 1$; and $ G$ is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is $ \textbf{(A)}\ 1/2\qquad \textbf{(B)}\ 2/3\qquad \textbf{(C)}\ 3/4\qquad \textbf{(D)}\ 5/6\qquad \textbf{(E)}\ 4/3$ [asy] size(180); defaultpen(linewidth(.7pt)+fontsize(10pt)); draw((-1,1)--(2,1)); draw((-1,0)--(1,0)); draw((-1,1)--(-1,0)); draw((0,-1)--(0,3)); draw((1,2)--(1,0)); draw((-1,1)--(1,1)); draw((0,2)--(1,2)); draw((0,3)--(1,2)); draw((0,-1)--(2,1)); draw((0,-1)--((0,-1) + sqrt(2)*dir(-15))); draw(((0,-1) + sqrt(2)*dir(-15))--(1,0)); label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW); label("$\textbf{B}$",midpoint((0,1)--(1,2))); label("$\textbf{C}$",midpoint((-1,0)--(0,1))); label("$\textbf{D}$",midpoint((0,0)--(1,1))); label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW); label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW); label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);[/asy]

2023 Harvard-MIT Mathematics Tournament, 21

Tags: guts
Let $x, y,$ and $N$ be real numbers, with $y$ nonzero, such that the sets $\{(x+y)^2, (x-y)^2, xy, x/y\}$ and $\{4, 12.8, 28.8, N\}$ are equal. Compute the sum of the possible values of $N.$

2019 Turkey Team SeIection Test, 2

$(a_{n})_{n=1}^{\infty}$ is an integer sequence, $a_{1}=1$, $a_{2}=2$ and for $n\geq{1}$, $a_{n+2}=a_{n+1}^{2}+(n+2)a_{n+1}-a_{n}^{2}-na_{n}$. $a)$ Prove that the set of primes that divides at least one term of the sequence can not be finite. $b)$ Find 3 different prime numbers that do not divide any terms of this sequence.

2007 IberoAmerican, 6

Let $ \mathcal{F}$ be a family of hexagons $ H$ satisfying the following properties: i) $ H$ has parallel opposite sides. ii) Any 3 vertices of $ H$ can be covered with a strip of width 1. Determine the least $ \ell\in\mathbb{R}$ such that every hexagon belonging to $ \mathcal{F}$ can be covered with a strip of width $ \ell$. Note: A strip is the area bounded by two parallel lines separated by a distance $ \ell$. The lines belong to the strip, too.

2011 AMC 10, 20

Two points on the circumference of a circle of radius r are selected independently and at random. From each point a chord of length r is drawn in a clockwise direction. What is the probability that the two chords intersect? $ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2} $

2022 Malaysia IMONST 2, 5

Let $a, b, r,$ and $s$ be positive integers ($a \ge 2$), where $a$ and $b$ have no common prime factor. Prove that if $a^r + b^r$ is divisible by $a^s + b^s$, then $r$ is divisible by $s$.

2018 Harvard-MIT Mathematics Tournament, 7

Rachel has the number $1000$ in her hands. When she puts the number $x$ in her left pocket, the number changes to $x+1.$ When she puts the number $x$ in her right pocket, the number changes to $x^{-1}.$ Each minute, she flips a fair coin. If it lands heads, she puts the number into her left pocket, and if it lands tails, she puts it into her right pocket. She then takes the new number out of her pocket. If the expected value of the number in Rachel's hands after eight minutes is $E,$ compute $\left\lfloor\frac{E}{10}\right\rfloor.$

2020 JHMT, 12

Tags: geometry
Circle $O$ is inscribed inside a non-isosceles trapezoid $JHMT$, tangent to all four of its sides. The longer of the two parallel sides of $JHMT$ is $\overline{JH}$ and has a length of $24$ units. Let $P$ be the point where $O$ is tangent to $\overline{JH}$, and let $Q$ be the point where $O$ is tangent to $\overline{MT}$. The circumcircle of $\vartriangle JQH$ intersects $O$ a second time at point $R$. $\overleftrightarrow{QR}$ intersects $\overleftrightarrow{JH}$ at point $S$, $35$ units away from $P$. The points inside $JHMT$ at which $\overline{JQ}$ and $\overline{HQ}$ intersect $O$ lie $\frac{63}{4}$ units apart. The area of $O$ can be expressed as $\frac{m\pi}{n}$ , where $\frac{m}{n}$ is a common fraction. Compute $m + n$.

1985 ITAMO, 15

Three 12 cm $\times$ 12 cm squares are each cut into two pieces $A$ and $B$, as shown in the first figure below, by joining the midpoints of two adjacent sides. These six pieces are then attached to a regular hexagon, as shown in the second figure, so as to fold into a polyhedron. What is the volume (in $\text{cm}^3$) of this polyhedron? [asy] defaultpen(fontsize(10)); size(250); draw(shift(0, sqrt(3)+1)*scale(2)*rotate(45)*polygon(4)); draw(shift(-sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(165)*polygon(4)); draw(shift(sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(285)*polygon(4)); filldraw(scale(2)*polygon(6), white, black); pair X=(2,0)+sqrt(2)*dir(75), Y=(-2,0)+sqrt(2)*dir(105), Z=(2*dir(300))+sqrt(2)*dir(225); pair[] roots={2*dir(0), 2*dir(60), 2*dir(120), 2*dir(180), 2*dir(240), 2*dir(300)}; draw(roots[0]--X--roots[1]); label("$B$", centroid(roots[0],X,roots[1])); draw(roots[2]--Y--roots[3]); label("$B$", centroid(roots[2],Y,roots[3])); draw(roots[4]--Z--roots[5]); label("$B$", centroid(roots[4],Z,roots[5])); label("$A$", (1+sqrt(3))*dir(90)); label("$A$", (1+sqrt(3))*dir(210)); label("$A$", (1+sqrt(3))*dir(330)); draw(shift(-10,0)*scale(2)*polygon(4)); draw((sqrt(2)-10,0)--(-10,sqrt(2))); label("$A$", (-10,0)); label("$B$", centroid((sqrt(2)-10,0),(-10,sqrt(2)),(sqrt(2)-10, sqrt(2))));[/asy]

2017 MIG, 7

Tags:
$1$ cow can produce $3$ gallons of milk each day. How many cows would it take to produce $210$ gallons of milk in a week? $\textbf{(A) } 3\qquad\textbf{(B) } 7\qquad\textbf{(C) } 10\qquad\textbf{(D) } 30\qquad\textbf{(E) } 70$

2021 Saint Petersburg Mathematical Olympiad, 3

Tags: pentagon , geometry
Given a convex pentagon $ABCDE$, points $A_1, B_1, C_1, D_1, E_1$ are such that $$AA_1 \perp BE, BB_1 \perp AC, CC_1 \perp BD, DD_1 \perp CE, EE_1 \perp DA.$$ In addition, $AE_1 = AB_1, BC_1 = BA_1, CB_1 = CD_1$ and $DC_1 = DE_1$. Prove that $ED_1 = EA_1$

1954 Putnam, A2

Tags: distance , square
Consider any five points in the interior of square $S$ of side length $1$. Prove that at least one of the distances between these points is less than $\sqrt{2} \slash 2.$ Can this constant be replaced by a smaller number?

2022 Nigerian Senior MO Round 2, Problem 6

Let $k, l, m, n$ be positive integers. Given that $k+l+m+n=km=ln$, find all possible values of $k+l+m+n$.

1999 Romania National Olympiad, 2

For a finite group $G$ we denote by $n(G)$ the number of elements of the group and by $s(G)$ the number of subgroups of it. Decide whether the following statements are true or false. a) For every $a>0$ the is a finite group $G$ with $\frac{n(G)}{s(G)}<a.$ b) For every $a>0$ the is a finite group $G$ with $\frac{n(G)}{s(G)}>a.$

2019 Belarus Team Selection Test, 2.2

Let $O$ be the circumcenter and $H$ be the orthocenter of an acute-angled triangle $ABC$. Point $T$ is the midpoint of the segment $AO$. The perpendicular bisector of $AO$ intersects the line $BC$ at point $S$. Prove that the circumcircle of the triangle $AST$ bisects the segment $OH$. [i](M. Berindeanu, RMC 2018 book)[/i]