Found problems: 85335
1997 Baltic Way, 11
On two parallel lines, the distinct points $A_1,A_2,A_3,\ldots $ respectively $B_1,B_2,B_3,\ldots $ are marked in such a way that $|A_iA_{i+1}|=1$ and $|B_iB_{i+1}|=2$ for $i=1,2,\ldots $. Provided that $A_1A_2B_1=\alpha$, find the infinite sum $\angle A_1B_1A_2+\angle A_2B_2A_3+\angle A_3B_3A_4+\ldots $
1998 Poland - Second Round, 1
Let $A_n = \{1,2,...,n\}$. Prove or disprove:
For all integers $n \ge 2$ there exist functions $f,g : A_n \to A_n$ which satisfy $f(f(k)) = g(g(k)) = k$ for $1 \le k \le n$, and $g(f(k)) = k +1$ for $1 \le k \le n -1$.
1972 Bulgaria National Olympiad, Problem 5
In a circle with radius $R$, there is inscribed a quadrilateral with perpendicular diagonals. From the intersection point of the diagonals, there are perpendiculars drawn to the sides of the quadrilateral.
(a) Prove that the feet of these perpendiculars $P_1,P_2,P_3,P_4$ are vertices of the quadrilateral that is inscribed and circumscribed.
(b) Prove the inequalities $2r_1\le\sqrt2 R_1\le R$ where $R_1$ and $r_1$ are radii respectively of the circumcircle and inscircle to the quadrilateral $P_1P_2P_3P_4$. When does equality hold?
[i]H. Lesov[/i]
1988 French Mathematical Olympiad, Problem 2
For each $n\in\mathbb N$, determine the sign of $n^6+5n^5\sin n+1$. For which $n\in\mathbb N$ does it hold that $\frac{n^2+5n\cos n+1}{n^6+5n^5\sin n+1}\ge10^{-4}$.
2024 Oral Moscow Geometry Olympiad, 3
An equilateral triangle $ABE$ is built inside the square $ABCD$ on the side $AB$, and an equilateral triangle $AFC$ is built on the diagonal $AC$ ($D$ is inside this triangle). The segment $EF$ intersects $CD$ at point $P$. Prove that the lines $AP$, $BE$ and $CF$ intersect at the same point.
2012 China Team Selection Test, 2
Given a scalene triangle $ABC$. Its incircle touches $BC,AC,AB$ at $D,E,F$ respectvely. Let $L,M,N$ be the symmetric points of $D$ with $EF$,of $E$ with $FD$,of $F$ with $DE$,respectively. Line $AL$ intersects $BC$ at $P$,line $BM$ intersects $CA$ at $Q$,line $CN$ intersects $AB$ at $R$. Prove that $P,Q,R$ are collinear.
2023 Brazil National Olympiad, 5
Let $m$ be a positive integer with $m \leq 2024$. Ana and Banana play a game alternately on a $1\times2024$ board, with squares initially painted white. Ana starts the game. Each move by Ana consists of choosing any $k \leq m$ white squares on the board and painting them all green. Each Banana play consists of choosing any sequence of consecutive green squares and painting them all white. What is the smallest value of $m$ for which Ana can guarantee that, after one of her moves, the entire board will be painted green?
2000 German National Olympiad, 1
For each real parameter $a$, find the number of real solutions to the system
$$\begin{cases} |x|+|y| = 1 , \\ x^2 +y^2 = a \end{cases}$$
2004 Iran MO (3rd Round), 7
Suppose $F$ is a polygon with lattice vertices and sides parralell to x-axis and y-axis.Suppose $S(F),P(F)$ are area and perimeter of $F$.
Find the smallest k that:
$S(F) \leq k.P(F)^2$
2016 CMIMC, 4
Andrew the Antelope canters along the surface of a regular icosahedron, which has twenty equilateral triangle faces and edge length 4. If he wants to move from one vertex to the opposite vertex, the minimum distance he must travel can be expressed as $\sqrt{n}$ for some integer $n$. Compute $n$.
2022 Switzerland Team Selection Test, 4
Given a (simple) graph $G$ with $n \geq 2$ vertices $v_1, v_2, \dots, v_n$ and $m \geq 1$ edges, Joël and Robert play the following game with $m$ coins:
[list=i]
[*]Joël first assigns to each vertex $v_i$ a non-negative integer $w_i$ such that $w_1+\cdots+w_n=m$.
[*]Robert then chooses a (possibly empty) subset of edges, and for each edge chosen he places a coin on exactly one of its two endpoints, and then removes that edge from the graph. When he is done, the amount of coins on each vertex $v_i$ should not be greater than $w_i$.
[*]Joël then does the same for all the remaining edges.
[*]Joël wins if the number of coins on each vertex $v_i$ is equal to $w_i$.
[/list]
Determine all graphs $G$ for which Joël has a winning strategy.
2014 AMC 12/AHSME, 6
The difference between a two-digit number and the number obtained by reversing its digits is $5$ times the sum of the digits of either number. What is the sum of the two digit number and its reverse?
$\textbf{(A) }44\qquad
\textbf{(B) }55\qquad
\textbf{(C) }77\qquad
\textbf{(D) }99\qquad
\textbf{(E) }110$
2015 Junior Regional Olympiad - FBH, 2
Show tha value $$A=\frac{(b-c)^2}{(a-b)(a-c)}+\frac{(c-a)^2}{(b-c)(b-a)}+\frac{(a-b)^2}{(c-a)(c-b)}$$ does not depend on values of $a$, $b$ and $c$
2014 Saudi Arabia Pre-TST, 2.1
Prove that $2014$ divides $53n^{55}- 57n^{53} + 4n$ for all integer $n$.
2019 Taiwan TST Round 1, 1
Find all functions $ f: \mathbb{R} \to \mathbb{R} $ such that $$ f\left(xf\left(y\right)-f\left(x\right)-y\right) = yf\left(x\right)-f\left(y\right)-x $$ holds for all $ x,y \in \mathbb{R} $
2000 Federal Competition For Advanced Students, Part 2, 2
A trapezoid $ABCD$ with $AB \parallel CD$ is inscribed in a circle $k$. Points $P$ and $Q$ are chose on the arc $ADCB$ in the order $A-P -Q-B$. Lines $CP$ and $AQ$ meet at $X$, and lines $BP$ and $DQ$ meet at $Y$. Show that points $P,Q,X, Y$ lie on a circle.
2006 MOP Homework, 3
There are $n$ distinct points in the plane. Given a circle in the plane containing at least one of the points in its interior. At each step one moves the center of the circle to the barycenter of all the points in the interior of the circle. Prove that this moving process terminates in the finite number of steps.
what does barycenter of n distinct points mean?
1988 Mexico National Olympiad, 6
Consider two fixed points $B,C$ on a circle $w$. Find the locus of the incenters of all triangles $ABC$ when point $A$ describes $w$.
1997 Bulgaria National Olympiad, 2
Given a triangle $ABC$.
Let $M$ and $N$ be the points where the angle bisectors of the angles $ABC$ and $BCA$ intersect the sides $CA$ and $AB$, respectively.
Let $D$ be the point where the ray $MN$ intersects the circumcircle of triangle $ABC$.
Prove that $\frac{1}{BD}=\frac{1}{AD}+\frac{1}{CD}$.
2005 Iran Team Selection Test, 2
Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that:
\[PX || AC \ , \ PY ||AB \]
Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$
2018 Regional Olympiad of Mexico Southeast, 2
Let $n=\frac{2^{2018}-1}{3}$. Prove that $n$ divides $2^n-2$.
2002 All-Russian Olympiad Regional Round, 9.7
[b](9.7)[/b] On the segment $[0, 2002]$ its ends and the point with coordinate $d$ are marked, where $d$ is a coprime number to $1001$. It is allowed to mark the midpoint of any segment with ends at the marked points, if its coordinate is integer. Is it possible, by repeating this operation several times, to mark all the integer points on a segment?
[b](10.7)[/b] On the segment $[0, 2002]$ its ends and $n-1 > 0$ integer points are marked so that the lengths of the segments into which the segment $ [0, 2002]$ is divided are corpime in the total (i.e., have no common divisor greater than $1$). It is allowed to divide any segment with marked ends into $n$ equal parts and mark the division points if they are all integers. (The point can be marked a second time, but it remains marked.) Is it possible, by repeating this operation several times, mark all the integer points on the segment?
[b](11.8)[/b] On the segment $ [0,N]$ its ends and $2 $ more points are marked so that the lengths segments into which the segment $[0,N]$ is divided are integer and coprime in total. If there are two marked points $A$ and $B$ such that the distance between them is a multiple of $3$, then we can divide from cutting $AB$ by $3$ equal parts, mark one of the division points and erase one of the points $A, B$. Is it true that for several such actions you can mark any predetermined integer point of the segment $[0,N]$?
2012 National Olympiad First Round, 14
What is the sum of distinct remainders when $(2n-1)^{502}+(2n+1)^{502}+(2n+3)^{502}$ is divided by $2012$ where $n$ is positive integer?
$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 1510 \qquad \textbf{(C)}\ 1511 \qquad \textbf{(D)}\ 1514 \qquad \textbf{(E)}\ \text{None}$
2002 Argentina National Olympiad, 1
On the computer screen there are initially two $1$'s written. The [i] insert [/i] program causes the sum of those numbers to be inserted between each pair of numbers by pressing the $Enter$ key.
In the first step a number is inserted and we obtain $1-2-1$; In the second step two numbers are inserted and we have $1-3-2-3-1$; In the third, four numbers are inserted and you have $1-4-3-5-2-5-3-4-1$; etc Find the sum of all the numbers that appear on the screen at the end of step number $25$.
2012 Middle European Mathematical Olympiad, 4
Let $ p>2 $ be a prime number. For any permutation $ \pi = ( \pi(1) , \pi(2) , \cdots , \pi(p) ) $ of the set $ S = \{ 1, 2, \cdots , p \} $, let $ f( \pi ) $ denote the number of multiples of $ p $ among the following $ p $ numbers:
\[ \pi(1) , \pi(1) + \pi(2) , \cdots , \pi(1) + \pi(2) + \cdots + \pi(p) \]
Determine the average value of $ f( \pi) $ taken over all permutations $ \pi $ of $ S $.