This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Purple Comet Problems, 3

Tags: algebra
The fraction $$\left(\frac{\frac13+1}{3} +\frac{1+ \frac13}{3} \right) / \left(\frac{3}{\frac{1}{3+1}+\frac{ 1}{1+3}}\right)$$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2007 Korea Junior Math Olympiad, 7

Let the incircle of $\triangle ABC$ meet $BC,CA,AB$ at $J,K,L$. Let $D(\ne B, J),E(\ne C,K), F(\ne A,L)$ be points on $BJ,CK,AL$. If the incenter of $\triangle ABC$ is the circumcenter of $\triangle DEF$ and $\angle BAC = \angle DEF$, prove that $\triangle ABC$ and $\triangle DEF$ are isosceles triangles.

2018 Regional Olympiad of Mexico West, 1

You want to color a flag like the one shown in the following image, for which four different colors are available. Two regions of the flag that share a side (or a segment of a side) must have different colors. The flag cannot be flipped, rotated, or reflected. How many different flags can be colored with these conditions? [img]https://cdn.artofproblemsolving.com/attachments/4/9/879d1e144acdbc63ee2ffe34cf13a920d5d836.png[/img]

2008 ITest, 49

Wendy takes Honors Biology at school, a smallish class with only fourteen students (including Wendy) who sit around a circular table. Wendy's friends Lucy, Starling, and Erin are also in that class. Last Monday none of the fourteen students were absent from class. Before the teacher arrived, Lucy and Starling stretched out a blue piece of yarn between them. Then Wendy and Erin stretched out a red piece of yarn between them at about the same height so that the yarn would intersect if possible. If all possible positions of the students around the table are equally likely, let $m/n$ be the probability that the yarns intersect, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$.

2023 IMAR Test, P4

Let $n{}$ be a non-negative integer and consider the standard power expansion of the following polynomial \[\sum_{k=0}^n\binom{n}{k}^2(X+1)^{2k}(X-1)^{2(n-k)}=\sum_{k=0}^{2n}a_kX^k.\]The coefficients $a_{2k+1}$ all vanish since the polynomial is invariant under the change $X\mapsto -X.$ Prove that the coefficients $a_{2k}$ are all positive.

2020 LMT Fall, 8

Tags:
A rhombus with sidelength $1$ has an inscribed circle with radius $\frac{1}{3}.$ If the area of the rhombus can be expressed as $\frac{a}{b}$ for relatively prime, positive $a,b,$ evaluate $a+b.$ [i]Proposed by Alex Li[/i]

2009 Hong kong National Olympiad, 2

there are $n$ points on the plane,any two vertex are connected by an edge of red,yellow or green,and any triangle with vertex in the graph contains exactly $2$ colours.prove that $n<13$

2002 China Girls Math Olympiad, 3

Tags: inequalities
Find all positive integers $ k$ such that for any positive numbers $ a, b$ and $ c$ satisfying the inequality \[ k(ab \plus{} bc \plus{} ca) > 5(a^2 \plus{} b^2 \plus{} c^2),\] there must exist a triangle with $ a, b$ and $ c$ as the length of its three sides respectively.

2011 Today's Calculation Of Integral, 706

In the $xyz$ space, consider a right circular cylinder with radius of base 2, altitude 4 such that \[\left\{ \begin{array}{ll} x^2+y^2\leq 4 &\quad \\ 0\leq z\leq 4 &\quad \end{array} \right.\] Let $V$ be the solid formed by the points $(x,\ y,\ z)$ in the circular cylinder satisfying \[\left\{ \begin{array}{ll} z\leq (x-2)^2 &\quad \\ z\leq y^2 &\quad \end{array} \right.\] Find the volume of the solid $V$.

2004 Estonia Team Selection Test, 6

Call a convex polyhedron a [i]footballoid [/i] if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it). Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.

2024 OMpD, 3

Tags: calculus , function
Let \( f: \mathbb{R} \to \mathbb{R} \) be a differentiable function such that \( f(0) = 0 \) and \( 0 < f'(t) \leq 1 \) for all \( t \in [0, 1] \). Show that: \[ \left( \int_0^1 f(t) \, dt \right)^2 \geq \int_0^1 f(t)^3 \, dt. \]

2015 Iran MO (3rd round), 1

Let $ABCD$ be the trapezoid such that $AB\parallel CD$. Let $E$ be an arbitrary point on $AC$. point $F$ lies on $BD$ such that $BE\parallel CF$. Prove that circumcircles of $\triangle ABF,\triangle BED$ and the line $AC$ are concurrent.

2009 Jozsef Wildt International Math Competition, W. 4

Let $\Phi$ denote the Euler totient function. Prove that for infinitely many $k$ we have $\Phi (2^k+1) < 2^{k-1}$ and that for infinitely many $m$ one has $\Phi (2^m+1) > 2^{m-1}$

Fractal Edition 1, P3

Can the number \( \overline{abc} + \overline{bca} + \overline{cab} \) be a perfect square?

1986 Iran MO (2nd round), 2

In a trapezoid $ABCD$, the legs $AB$ and $CD$ meet in $M$ and the diagonals $AC$ and $BD$ meet in $N.$ Let $AC=a$ and $BC=b.$ Find the area of triangles $AMD$ and $AND$ in terms of $a$ and $b.$

2020 Romania EGMO TST, P1

Let $a$ be a positive integer and $(a_n)_{n\geqslant 1}$ be a sequence of positive integers satisfying $a_n<a_{n+1}\leqslant a_n+a$ for all $n\geqslant 1$. Prove that there are infinitely many primes which divide at least one term of the sequence. [i]Moldavia Olympiad, 1994[/i]

2006 APMO, 4

Let $A,B$ be two distinct points on a given circle $O$ and let $P$ be the midpoint of the line segment AB. Let $O_1$ be the circle tangent to the line $AB$ at $P$ and tangent to the circle $O$. Let $l$ be the tangent line, different from the line $AB$, to $O_1$ passing through $A$. Let $C$ be the intersection point, different from $A$, of $l$ and $O$. Let $Q$ be the midpoint of the line segment $BC$ and $O_2$ be the circle tangent to the line $BC$ at $Q$ and tangent to the line segment $AC$. Prove that the circle $O_2$ is tangent to the circle $O$.

2022 AIME Problems, 6

Tags:
Let $x_1\leq x_2\leq \cdots\leq x_{100}$ be real numbers such that $|x_1| + |x_2| + \cdots + |x_{100}| = 1$ and $x_1 + x_2 + \cdots + x_{100} = 0$. Among all such $100$-tuples of numbers, the greatest value that $x_{76} - x_{16}$ can achieve is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Russian TST 2018, P1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2001 Putnam, 1

Tags:
Let $n$ be an even positive integer. Write the numbers $1, 2, \cdots, n^2$ in the squares of an $n \times n$ grid so that the $k$th row, from left to right, is \[ (k-1)n + 1, \ (k-1)n + 2, \ \cdots, \ (k-1)n + n. \] Color the squares of the grid so that half of the squares in each row and in each column are red and the other half are black (a checkerboard coloring is one possibility). Prove that for each coloring, the sum of the numbers on the red squares is equal to the sum of the numbers on the black squares.

2010 USA Team Selection Test, 5

Define the sequence $a_1, a_2, a_3, \ldots$ by $a_1 = 1$ and, for $n > 1$, \[a_n = a_{\lfloor n/2 \rfloor} + a_{\lfloor n/3 \rfloor} + \ldots + a_{\lfloor n/n \rfloor} + 1.\] Prove that there are infinitely many $n$ such that $a_n \equiv n \pmod{2^{2010}}$.

2015 Mexico National Olympiad, 2

Let $n$ be a positive integer and let $k$ be an integer between $1$ and $n$ inclusive. There is a white board of $n \times n$. We do the following process. We draw $k$ rectangles with integer sides lenghts and sides parallel to the ones of the $n \times n$ board, and such that each rectangle covers the top-right corner of the $n \times n$ board. Then, the $k$ rectangles are painted of black. This process leaves a white figure in the board. How many different white figures are possible to do with $k$ rectangles that can't be done with less than $k$ rectangles? Proposed by David Torres Flores

2015 South East Mathematical Olympiad, 5

Tags: algebra
Suppose that $a,b$ are real numbers, function $f(x) = ax+b$ satisfies $\mid f(x) \mid \leq 1$ for any $x \in [0,1]$. Find the range of values of $S= (a+1)(b+1).$

VMEO IV 2015, 12.4

We call the [i]tribi [/i] of a positive integer $k$ (denoted $T(k)$) the number of all pairs $11$ in the binary representation of $k$. e.g $$T(1)=T(2)=0,\, T(3)=1, \,T(4)=T(5)=0,\,T(6)=1,\,T(7)=2.$$ Calculate $S_n=\sum_{k=1}^{2^n}T(K)$.

2018 Malaysia National Olympiad, A5

Determine the value of $(101 \times 99)$ - $(102 \times 98)$ + $(103 \times 97)$ − $(104 \times 96)$ + ... ... + $(149 \times 51)$ − $(150 \times 50)$.