This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 Tuymaada Olympiad, 1

$100$ heaps of stones lie on a table. Two players make moves in turn. At each move, a player can remove any non-zero number of stones from the table, so that at least one heap is left untouched. The player that cannot move loses. Determine, for each initial position, which of the players, the first or the second, has a winning strategy. [i]K. Kokhas[/i] [b]EDIT.[/b] It is indeed confirmed by the sender that empty heaps are still heaps, so the third post contains the right guess of an interpretation.

2018 Germany Team Selection Test, 2

Tags: algebra
A positive integer $d$ and a permutation of positive integers $a_1,a_2,a_3,\dots$ is given such that for all indices $i\geq 10^{100}$, $|a_{i+1}-a_{i}|\leq 2d$ holds. Prove that there exists infinity many indices $j$ such that $|a_j -j|< d$.

2000 AMC 8, 5

Tags:
Each principal of Lincoln High School serves exactly one $3$-year term. What is the maximum number of principals this school could have during an $8$-year period? $\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 8$

2011 Argentina Team Selection Test, 3

Let $ABCD$ be a trapezoid with bases $BC \parallel AD$, where $AD > BC$, and non-parallel legs $AB$ and $CD$. Let $M$ be the intersection of $AC$ and $BD$. Let $\Gamma_1$ be a circumference that passes through $M$ and is tangent to $AD$ at point $A$; let $\Gamma_2$ be a circumference that passes through $M$ and is tangent to $AD$ at point $D$. Let $S$ be the intersection of the lines $AB$ and $CD$, $X$ the intersection of $\Gamma_1$ with the line $AS$, $Y$ the intesection of $\Gamma_2$ with the line $DS$, and $O$ the circumcenter of triangle $ASD$. Show that $SO \perp XY$.

2002 Irish Math Olympiad, 5

Tags: geometry
Let $ ABC$ be a triangle with integer side lengths, and let its incircle touch $ BC$ at $ D$ and $ AC$ at $ E$. If $ |AD^2\minus{}BE^2| \le 2$, show that $ AC\equal{}BC$.

2001 China Team Selection Test, 2

Let \( \varphi \) be the Euler's totient function. 1. For any given integer \( a > 1 \), does there exist \( l \in \mathbb{N}_+ \) such that for any \( k \in \mathbb{N}_+ \), \( l \mid k \) and \( a^2 \nmid l \), \( \frac{\varphi(k)}{\varphi(l)} \) is a non-negative power of \( a \)? 2. For integer \( x > a \), are there integers \( k_1 \) and \( k_2 \) satisfying: \[ \varphi(k_i) \in \left ( \frac{x}{a} ,x \right ], i = 1,2; \quad \varphi(k_1) \neq \varphi(k_2). \] And these two different \( k_i \) correspond to the same \( l_1 \) and \( l_2 \) as described in (1), yet \( \varphi(l_1) = \varphi(l_2) \). 3. Define \( \#E \) as the number of elements in set \( E \). For integer \( x > a \), let \( V(x) = \#\{v \in \mathbb{N}_+ \mid v = \varphi(k) \leq x\} \) and \( W(x) = \#\{w \in \mathbb{N}_+ \mid w = \varphi(l) \leq x, a^2 \mid l\} \). Compare \( V\left( \frac{x}{a} \right) \) with \( W(x) \).

2018-2019 SDML (High School), 7

Tags:
In a game of Shipbattle, Willis secretly places his aircraft carrier somewhere in a $9 \times 9$ grid, represented by five consecutive squares. Two example positions are shown below. [asy] size(5cm); fill((2,7)--(7,7)--(7,8)--(2,8)--cycle); fill((5,1)--(6,1)--(6,6)--(5,6)--cycle); for (int i = 0; i <= 9; ++i) { draw((i,0)--(i,9)); draw((0,i)--(9,i)); } [/asy] Phyllis then takes shots at the grid, one square at a time, trying to hit Willis's aircraft carrier. What is the minimum number of shots that Phyllis must take to ensure that she hits the aircraft carrier at least once?

2024 Turkey MO (2nd Round), 4

Let $n$ be a positive integer, and let $1=d_1<d_2<\dots < d_k=n$ denote all positive divisors of $n$, If the following conditions are satisfied: $$ 2d_2+d_4+d_5=d_7$$ $$ d_3 d_6 d_7=n$$ $$ (d_6+d_7)^2=n+1$$ find all possible values of $n$.

2022 Iranian Geometry Olympiad, 5

Tags: geometry
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$ with center $O$. Let $P$ be the intersection of two diagonals $AC$ and $BD$. Let $Q$ be a point lying on the segment $OP$. Let $E$ and $F$ be the orthogonal projections of $Q$ on the lines $AD$ and $BC$, respectively. The points $M$ and $N$ lie on the circumcircle of triangle $QEF$ such that $QM \parallel AC$ and $QN \parallel BD$. Prove that the two lines $ME$ and $NF$ meet on the perpendicular bisector of segment $CD$. [i]Proposed by Tran Quang Hung, Vietnam[/i]

2024 Turkey Team Selection Test, 2

Find all $f:\mathbb{R}\to\mathbb{R}$ functions such that $$f(x+y)^3=(x+2y)f(x^2)+f(f(y))(x^2+3xy+y^2)$$ for all real numbers $x,y$

2012 Pre-Preparation Course Examination, 3

Suppose that $T,U:V\longrightarrow V$ are two linear transformations on the vector space $V$ such that $T+U$ is an invertible transformation. Prove that $TU=UT=0 \Leftrightarrow \operatorname{rank} T+\operatorname{rank} U=n$.

2003 Junior Tuymaada Olympiad, 1

A $2003\times 2004$ rectangle consists of unit squares. We consider rhombi formed by four diagonals of unit squares. What maximum number of such rhombi can be arranged in this rectangle so that no two of them have any common points except vertices? [i]Proposed by A. Golovanov[/i]

1990 Canada National Olympiad, 4

A particle can travel at speeds up to $ \frac{2m}{s}$ along the $ x$-axis, and up to $ \frac{1m}{s}$ elsewhere in the plane. Provide a labelled sketch of the region which can be reached within one second by the particle starting at the origin.

2014 Singapore Senior Math Olympiad, 31

Find the number of ways that $7$ different guests can be seated at a round table with exactly 10 seats, without removing any empty seats. Here two seatings are considered to be the same if they can be obtained from each other by a rotation.

Croatia MO (HMO) - geometry, 2013.3

Given a pointed triangle $ABC$ with orthocenter $H$. Let $D$ be the point such that the quadrilateral $AHCD$ is parallelogram. Let $p$ be the perpendicular to the direction $AB$ through the midpoint $A_1$ of the side $BC$. Denote the intersection of the lines $p$ and $AB$ with $E$, and the midpoint of the length $A_1E$ with $F$. The point where the parallel to the line $BD$ through point $A$ intersects $p$ denote by $G$. Prove that the quadrilateral $AFA_1C$ is cyclic if and only if the lines $BF$ passes through the midpoint of the length $CG$.

2005 Tuymaada Olympiad, 6

Tags: algebra
Given are a positive integer $n$ and an infinite sequence of proper fractions $x_0 = \frac{a_0}{n}$, $\ldots$, $x_i=\frac{a_i}{n+i}$, with $a_i < n+i$. Prove that there exist a positive integer $k$ and integers $c_1$, $\ldots$, $c_k$ such that \[ c_1 x_1 + \ldots + c_k x_k = 1. \] [i]Proposed by M. Dubashinsky[/i]

2019 Jozsef Wildt International Math Competition, W. 29

Prove that $$\int \limits_0^{\infty} e^{3t}\frac{4e^{4t}(3t - 1) + 2e^{2t}(15t - 17) + 18(1 - t)}{\left(1 + e^{4t} - e^{2t}\right)^2}=12\sum \limits_{k=0}^{\infty}\frac{(-1)^k}{(2k + 1)^2}-10$$

2012 South East Mathematical Olympiad, 1

A nonnegative integer $m$ is called a “six-composited number” if $m$ and the sum of its digits are both multiples of $6$. How many “six-composited numbers” that are less than $2012$ are there?

2002 Mongolian Mathematical Olympiad, Problem 6

Tags: game , geometry
Two squares of area $38$ are given. Each of the squares is divided into $38$ connected pieces of unit area by simple curves. Then the two squares are patched together. Show that one can sting the patched squares with $38$ needles so that every piece of each square is stung exactly once.

2014 ASDAN Math Tournament, 10

In a convex quadrilateral $ABCD$ we are given that $\angle CAD=10^\circ$, $\angle DBC=20^\circ$, $\angle BAD=40^\circ$, $\angle ABC=50^\circ$. Compute angle $BDC$.

2014 Belarus Team Selection Test, 2

Prove that for all even positive integers $n$ the following inequality holds a) $\{n\sqrt6\} > \frac{1}{n}$ b)$ \{n\sqrt6\}> \frac{1}{n-1/(5n)} $ (I. Voronovich)

1984 Putnam, B3

Prove or disprove the following statement: If $F$ is a finite set with two or more elements, then there exists a binary operation $*$ on $F$ such that for all $x,y,z$ in $F$, $(\text i)$ $x*z=y*z$ implies $x=y$ $(\text{ii})$ $x*(y*z)\ne(x*y)*z$

2018 Junior Regional Olympiad - FBH, 1

Four buddies bought a ball. First one paid half of the ball price. Second one gave one third of money that other three gave. Third one paid a quarter of sum paid by other three. Fourth paid $5\$$. How much did the ball cost?

2014 Contests, 2

$a)$ Let $n$ a positive integer. Prove that $gcd(n, \lfloor n\sqrt{2} \rfloor)<\sqrt[4]{8}\sqrt{n}$. $b)$ Prove that there are infinitely many positive integers $n$ such that $gcd(n, \lfloor n\sqrt{2} \rfloor)>\sqrt[4]{7.99}\sqrt{n}$.

2024 239 Open Mathematical Olympiad, 8

Let $x_1, x_2, \ldots$ be a sequence of $0,1$, such that it satisfies the following three conditions: 1) $x_2=x_{100}=1$, $x_i=0$ for $1 \leq i \leq 100$ and $i \neq 2,100$; 2) $x_{2n-1}=x_{n-50}+1, x_{2n}=x_{n-50}$ for $51 \leq n \leq 100$; 3) $x_{2n}=x_{n-50}, x_{2n-1}=x_{n-50}+x_{n-100}$ for $n>100$. Show that the sequence is periodic.