This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 Iran Team Selection Test, 10

On each edge of a graph is written a real number,such that for every even tour of this graph,sum the edges with signs alternatively positive and negative is zero.prove that one can assign to each of the vertices of the graph a real number such that sum of the numbers on two adjacent vertices is the number on the edge between them.(tour is a closed path from the edges of the graph that may have repeated edges or vertices)

Ukrainian TYM Qualifying - geometry, V.3

Fix the triangle $ABC$ on the plane. 1. Denote by $S_L,S_M$ and $S_K$ the areas of triangles whose vertices are, respectively, the bases of bisectors, medians and points of tangency of the inscribed circle of a given triangle $ABC$. Prove that $S_K\le S_L\le S_M$. 2. For the point $X$, which is inside the triangle $ABC$, consider the triangle $T_X$, the vertices of which are the points of intersection of the lines $AX, BX, CX$ with the lines $BC, AC, AB$, respectively. 2.1. Find the position of the point $X$ for which the area of ​​the triangle $T_x$ is the largest possible. 2.2. Suggest an effective criterion for comparing the areas of triangles $T_x$ for different positions of the point $X$. 2.3. Find the positions of the point $X$ for which the perimeter of the triangle $T_x$ is the smallest possible and the largest possible. 2.4. Propose an effective criterion for comparing the perimeters of triangles $T_x$ for different positions of point $X$. 2.5. Suggest and solve similar problems with respect to the extreme values ​​of other parameters (for example, the radius of the circumscribed circle, the length of the greatest height) of triangles $T_x$. 3. For the point $Y$, which is inside the circle $\omega$, circumscribed around the triangle $ABC$, consider the triangle $\Delta_Y$, the vertices of which are the points of intersection $AY, BX, CX$ with the circle $\omega$. Suggest and solve similar problems for triangles $\Delta_Y$ for different positions of point $Y$. 4. Suggest and solve similar problems for convex polygons. 5. For the point $Z$, which is inside the circle $\omega$, circumscribed around the triangle $ABC$, consider the triangle $F_Z$, the vertices of which are orthogonal projections of the point $Z$ on the lines $BC$, $AC$ and $AB$. Suggest and solve similar problems for triangles $F_Z$ for different positions of the point $Z$.

2008 AMC 10, 5

Tags:
Which of the following is equal to the product \[ \frac {8}{4}\cdot\frac {12}{8}\cdot\frac {16}{12}\cdots\frac {4n \plus{} 4}{4n}\cdots\frac {2008}{2004}? \]$ \textbf{(A)}\ 251 \qquad \textbf{(B)}\ 502 \qquad \textbf{(C)}\ 1004 \qquad \textbf{(D)}\ 2008 \qquad \textbf{(E)}\ 4016$

1995 AMC 8, 11

Jane can walk any distance in half the time it takes Hector to walk the same distance. They set off in opposite directions around the outside of the 18-block area as shown. When they meet for the first time, they will be closest to [asy] for(int i = -2; i <= 2; ++i) { draw((i,0)--(i,3),dashed); } draw((-3,1)--(3,1),dashed); draw((-3,2)--(3,2),dashed); draw((-3,0)--(-3,3)--(3,3)--(3,0)--cycle); dot((-3,0)); label("$A$",(-3,0),SW); dot((-3,3)); label("$B$",(-3,3),NW); dot((0,3)); label("$C$",(0,3),N); dot((3,3)); label("$D$",(3,3),NE); dot((3,0)); label("$E$",(3,0),SE); dot((0,0)); label("start",(0,0),S); label("$\longrightarrow$",(0,-0.75),E); label("$\longleftarrow$",(0,-0.75),W); label("$\textbf{Jane}$",(0,-1.25),W); label("$\textbf{Hector}$",(0,-1.25),E); [/asy] $\text{(A)}\ A \qquad \text{(B)}\ B \qquad \text{(C)}\ C \qquad \text{(D)}\ D \qquad \text{(E)}\ E$

2023 Thailand TSTST, 4

Tags: algebra
Prove that there doesn't exist a function $f:\mathbb{N} \rightarrow \mathbb{N}$, such that $(m+f(n))^2 \geq 3f(m)^2+n^2$ for all $m, n \in \mathbb{N}$.

2024 Dutch IMO TST, 3

Player Zero and Player One play a game on a $n \times n$ board ($n \ge 1$). The columns of this $n \times n$ board are numbered $1,2,4,\dots,2^{n-1}$. Turn my turn, the players put their own number in one of the free cells (thus Player Zero puts a $0$ and Player One puts a $1$). Player Zero begins. When the board is filled, the game ends and each row yields a (reverse binary) number obtained by adding the values of the columns with a $1$ in that row. For instance, when $n=4$, a row with $0101$ yields the number $0 \cdot1+1 \cdot 2+0 \cdot 4+1 \cdot 8=10$. a) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $4$? b) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $3$?

2021-IMOC, G3

Tags: geometry , incenter
Let $I$ be the incenter of the acute triangle $\triangle ABC$, and $BI$, $CI$ intersect the altitude of $\triangle ABC$ through $A$ at $U$, $V$, respectively. The circle with $AI$ as a diameter intersects $\odot(ABC)$ again at $T$, and $\odot(TUV)$ intersects the segment $BC$ and $\odot(ABC)$ at $P$, $Q$, respectively. Let $R$ be another intersection of $PQ$ and $\odot(ABC)$. Show that $AR\parallel BC$.

PEN H Problems, 44

For all $n \in \mathbb{N}$, show that the number of integral solutions $(x, y)$ of \[x^{2}+xy+y^{2}=n\] is finite and a multiple of $6$.

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

2018 CCA Math Bonanza, L3.2

Tags:
How many positive integers $n\leq100$ satisfy $\left\lfloor n\pi\right\rfloor=\left\lfloor\left(n-1\right)\pi\right\rfloor+3$? Here $\left\lfloor x\right\rfloor$ is the greatest integer less than or equal to $x$; for example, $\left\lfloor\pi\right\rfloor=3$. [i]2018 CCA Math Bonanza Lightning Round #3.2[/i]

1994 USAMO, 2

The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue, $\,\ldots, \,$ red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue, $\, \ldots, \,$ red, yellow, blue?

2024 Belarusian National Olympiad, 10.6

Let $\omega$ be the circumcircle of triangle $ABC$. Tangent lines to $\omega$ at points $A$ and $C$ intersect at $K$. Line $BK$ intersects $\omega$ for the second time at $M$. On the line $BC$ point $N$ is chosen such that $\angle BAN = 90$. Line $MN$ intersects $\omega$ for the second time at $D$. Prove that $BD=BC$ [i]P. Chernikova[/i]

2019 IFYM, Sozopol, 4

The inscribed circle of an acute $\Delta ABC$ is tangent to $AB$ and $AC$ in $K$ and $L$ respectively. The altitude $AH$ intersects the angle bisectors of $\angle ABC$ and $\angle ACB$ in $P$ and $Q$ respectively. Prove that the middle point $M$ of $AH$ lies on the radical axis of the circumscribed circles of $\Delta KPB$ and $\Delta LQC$.

2015 Hanoi Open Mathematics Competitions, 12

Give an isosceles triangle $ABC$ at $A$. Draw ray $Cx$ being perpendicular to $CA, BE$ perpendicular to $Cx$ ($E \in Cx$).Let $M$ be the midpoint of $BE$, and $D$ be the intersection point of $AM$ and $Cx$. Prove that $BD \perp BC$.

2012 Purple Comet Problems, 11

Tags: function
For some integers $a$ and $b$ the function $f(x)=ax+b$ has the properties that $f(f(0))=0$ and $f(f(f(4)))=9$. Find $f(f(f(f(10))))$.

2023 Stanford Mathematics Tournament, 3

Tags:
Nathan has discovered a new way to construct chocolate bars, but it’s expensive! He starts with a single $1\times1$ square of chocolate and then adds more rows and columns from there. If his current bar has dimensions $w\times h$ ($w$ columns and $h$ rows), then it costs $w^2$ dollars to add another row and $h^2$ dollars to add another column. What is the minimum cost to get his chocolate bar to size $20\times20$?

2018 ELMO Shortlist, 1

Let $n$ be a positive integer. There are $2018n+1$ cities in the Kingdom of Sellke Arabia. King Mark wants to build two-way roads that connect certain pairs of cities such that for each city $C$ and integer $1\le i\le 2018,$ there are exactly $n$ cities that are a distance $i$ away from $C.$ (The [i]distance[/i] between two cities is the least number of roads on any path between the two cities.) For which $n$ is it possible for Mark to achieve this? [i]Proposed by Michael Ren[/i]

2015 Junior Balkan Team Selection Tests - Romania, 1

Find all the positive integers $N$ with an even number of digits with the property that if we multiply the two numbers formed by cutting the number in the middle we get a number that is a divisor of $N$ ( for example $12$ works because $1 \cdot 2$ divides $12$)

2023 ELMO Shortlist, C1

Elmo has 2023 cookie jars, all initially empty. Every day, he chooses two distinct jars and places a cookie in each. Every night, Cookie Monster finds a jar with the most cookies and eats all of them. If this process continues indefinitely, what is the maximum possible number of cookies that the Cookie Monster could eat in one night? [i]Proposed by Espen Slettnes[/i]

2010 LMT, 11

Tags:
Carl, James, Saif, and Ted play several games of two-player For The Win on the Art of Problem Solving website. If, among these games, Carl wins $5$ and loses $0,$ James wins $4$ and loses $2,$ Saif wins $1$ and loses $6,$ and Ted wins $4,$ how many games does Ted lose?

2015 Paraguay Mathematical Olympiad, 3

Tags: geometry
A cube is divided into $8$ smaller cubes of the same size, as shown in the figure. Then, each of these small cubes is divided again into $8$ smaller cubes of the same size. This process is done $4$ more times to each resulting cube. What is the ratio between the sum of the total areas of all the small cubes resulting from the last division and the total area of the initial cube?

2019 Saudi Arabia JBMO TST, 1

Tags: geometry
On the sides $BC$ and $CD$ of the square $ABCD$ of side $1$, are chosen the points $E$, respectively $F$, so that $<$ $EAB$ $=$ $20$ If $<$ $EAF$ $=$ $45$, calculate the distance from point $A$ to the line $EF$.

2023 CMIMC Geometry, 2

Tags: geometry
Two circles have radius $2$ and $3$, and the distance between their centers is $10$. Let $E$ be the intersection of their two common external tangents, and $I$ be the intersection of their two common internal tangents. Compute $EI$. (A [i]common external tangent[/i] is a tangent line to two circles such that the circles are on the same side of the line, while a [i]common internal tangent[/i] is a tangent line to two circles such that the circles are on opposite sides of the line). [i]Proposed by Connor Gordon)[/i]

2016 CCA Math Bonanza, L4.3

Tags: inequalities
Let $ABC$ be a non-degenerate triangle with perimeter $4$ such that $a=bc\sin^2A$. If $M$ is the maximum possible area of $ABC$ and $m$ is the minimum possible area of $ABC$, then $M^2+m^2$ can be expressed in the form $\frac{a}{b}$ for relatively prime positive integers $a$ and $b$. Compute $a+b$. [i]2016 CCA Math Bonanza Lightning #4.3[/i]

2020 AMC 10, 2

The numbers $3, 5, 7, a,$ and $b$ have an average (arithmetic mean) of $15$. What is the average of $a$ and $b$? $\textbf{(A) } 0 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 30 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 60$