This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2017 Yasinsky Geometry Olympiad, 2

In the tetrahedron $DABC, AB=BC, \angle DBC =\angle DBA$. Prove that $AC \perp DB$.

1988 Mexico National Olympiad, 8

Compute the volume of a regular octahedron circumscribed about a sphere of radius $1$.

2015 Sharygin Geometry Olympiad, P24

The insphere of a tetrahedron ABCD with center $O$ touches its faces at points $A_1,B_1,C_1$ and $D_1$. a) Let $P_a$ be a point such that its reflections in lines $OB,OC$ and $OD$ lie on plane $BCD$. Points $P_b, P_c$ and $P_d$ are defined similarly. Prove that lines $A_1P_a,B_1P_b,C_1P_c$ and $D_1P_d$ concur at some point $ P$. b) Let $I$ be the incenter of $A_1B_1C_1D_1$ and $A_2$ the common point of line $A_1I $ with plane $B_1C_1D_1$. Points $B_2, C_2, D_2$ are defined similarly. Prove that $P$ lies inside $A_2B_2C_2D_2$.

2017 Yasinsky Geometry Olympiad, 5

$ABCD$ is a rectangle. The segment $MA$ is perpendicular to plane $ABC$ . $MB= 15$ , $MC=24$ , $MD=20$. Find the length of $MA$ .

1977 Vietnam National Olympiad, 6

The planes $p$ and $p'$ are parallel. A polygon $P$ on $p$ has $m$ sides and a polygon $P'$ on $p'$ has $n$ sides. Find the largest and smallest distances between a vertex of $P$ and a vertex of $P'$.

2007 Sharygin Geometry Olympiad, 5

Each edge of a convex polyhedron is shifted such that the obtained edges form the frame of another convex polyhedron. Are these two polyhedra necessarily congruent?

2015 Sharygin Geometry Olympiad, P23

A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.

1998 Mexico National Olympiad, 6

A plane in space is equidistant from a set of points if its distances from the points in the set are equal. What is the largest possible number of equidistant planes from five points, no four of which are coplanar?

2015 Tournament of Towns, 7

It is well-known that if a quadrilateral has the circumcircle and the incircle with the same centre then it is a square. Is the similar statement true in 3 dimensions: namely, if a cuboid is inscribed into a sphere and circumscribed around a sphere and the centres of the spheres coincide, does it imply that the cuboid is a cube? (A cuboid is a polyhedron with 6 quadrilateral faces such that each vertex belongs to $3$ edges.) [i]($10$ points)[/i]

2014 Sharygin Geometry Olympiad, 22

Does there exist a convex polyhedron such that it has diagonals and each of them is shorter than each of its edges?

2019 Azerbaijan Senior NMO, 4

Is it possible to construct a equilateral triangle such that: $\text{a)}$ Coordinates of this triangle are integers in two dimensional plane? $\text{b)}$ Coordinates of this triangle are integers in three dimensional plane?

1997 Rioplatense Mathematical Olympiad, Level 3, 2

Consider a prism, not necessarily right, whose base is a rhombus $ABCD$ with side $AB = 5$ and diagonal $AC = 8$. A sphere of radius $r$ is tangent to the plane $ABCD$ at $C$ and tangent to the edges $AA_1$ , $BB _1$ and $DD_ 1$ of the prism. Calculate $r$ .

1979 Vietnam National Olympiad, 6

$ABCD$ is a rectangle with $BC / AB = \sqrt2$. $ABEF$ is a congruent rectangle in a different plane. Find the angle $DAF$ such that the lines $CA$ and $BF$ are perpendicular. In this configuration, find two points on the line $CA$ and two points on the line $BF$ so that the four points form a regular tetrahedron.

1987 Mexico National Olympiad, 8

(a) Three lines $l,m,n$ in space pass through point $S$. A plane perpendicular to $m$ intersects $l,m,n $ at $A,B,C$ respectively. Suppose that $\angle ASB = \angle BSC = 45^o$ and $\angle ABC = 90^o$. Compute $\angle ASC$. (b) Furthermore, if a plane perpendicular to $l$ intersects $l,m,n$ at $P,Q,R$ respectively and $SP = 1$, find the sides of triangle $PQR$.

1992 Mexico National Olympiad, 1

The tetrahedron $OPQR$ has the $\angle POQ = \angle POR = \angle QOR = 90^o$. $X, Y, Z$ are the midpoints of $PQ, QR$ and $RP.$ Show that the four faces of the tetrahedron $OXYZ$ have equal area.

2000 Austrian-Polish Competition, 2

In a unit cube, $CG$ is the edge perpendicular to the face $ABCD$. Let $O_1$ be the incircle of square $ABCD$ and $O_2$ be the circumcircle of triangle $BDG$. Determine min$\{XY|X\in O_1,Y\in O_2\}$.

1972 Vietnam National Olympiad, 4

Let $ABCD$ be a regular tetrahedron with side $a$. Take $E,E'$ on the edge $AB, F, F'$ on the edge $AC$ and $G,G'$ on the edge AD so that $AE =a/6,AE' = 5a/6,AF= a/4,AF'= 3a/4,AG = a/3,AG'= 2a/3$. Compute the volume of $EFGE'F'G'$ in term of $a$ and find the angles between the lines $AB,AC,AD$ and the plane $EFG$.

1996 Spain Mathematical Olympiad, 6

A regular pentagon is constructed externally on each side of a regular pentagon of side $1$. The figure is then folded and the two edges of the external pentagons meeting at each vertex of the original pentagon are glued together. Find the volume of water that can be poured into the obtained container.

2020 Polish Junior MO First Round, 7.

Consider the right prism with the rhombus with side $a$ and acute angle $60^{\circ}$ as a base. This prism was intersected by some plane intersecting its side edges, such that the cross-section of the prism and the plane is a square. Determine all possible lengths of the side of this square.

1991 Mexico National Olympiad, 3

Four balls of radius $1$ are placed in space so that each of them touches the other three. What is the radius of the smallest sphere containing all of them?

1965 Vietnam National Olympiad, 2

$AB$ and $CD$ are two fixed parallel chords of the circle $S$. $M$ is a variable point on the circle. $Q$ is the intersection of the lines $MD$ and $AB$. $X$ is the circumcenter of the triangle $MCQ$. Find the locus of $X$. What happens to $X$ as $M$ tends to (1) $D$, (2) $C$? Find a point $E$ outside the plane of $S$ such that the circumcenter of the tetrahedron $MCQE$ has the same locus as $X$.

2015 Caucasus Mathematical Olympiad, 4

The midpoint of the edge $SA$ of the triangular pyramid of $SABC$ has equal distances from all the vertices of the pyramid. Let $SH$ be the height of the pyramid. Prove that $BA^2 + BH^2 = C A^2 + CH^2$.

2017 Yasinsky Geometry Olympiad, 5

Find the area of the section of a unit cube $ABCDA_1B_1C_1D_1$, when a plane passes through the midpoints of the edges $AB, AD$ and $CC_1$.

1976 Vietnam National Olympiad, 5

$L, L'$ are two skew lines in space and $p$ is a plane not containing either line. $M$ is a variable line parallel to $p$ which meets $L$ at $X$ and $L'$ at $Y$. Find the position of $M$ which minimises the distance $XY$. $L''$ is another fixed line. Find the line $M$ which is also perpendicular to $L''$ .

1964 Vietnam National Olympiad, 3

Let $P$ be a plane and two points $A \in (P),O \notin (P)$. For each line in $(P)$ through $A$, let $H$ be the foot of the perpendicular from $O$ to the line. Find the locus $(c)$ of $H$. Denote by $(C)$ the oblique cone with peak $O$ and base $(c)$. Prove that all planes, either parallel to $(P)$ or perpendicular to $OA$, intersect $(C)$ by circles. Consider the two symmetric faces of $(C)$ that intersect $(C)$ by the angles $\alpha$ and $\beta$ respectively. Find a relation between $\alpha$ and $\beta$.