This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2006 AMC 10, 24

Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron? $ \textbf{(A) } \frac 18 \qquad \textbf{(B) } \frac 16 \qquad \textbf{(C) } \frac 14 \qquad \textbf{(D) } \frac 13 \qquad \textbf{(E) } \frac 12$

Indonesia Regional MO OSP SMA - geometry, 2019.1

Given cube $ ABCD.EFGH $ with $ AB = 4 $ and $ P $ midpoint of the side $ EFGH $. If $ M $ is the midpoint of $ PH $, find the length of segment $ AM $.

2007 All-Russian Olympiad, 1

Faces of a cube $9\times 9\times 9$ are partitioned onto unit squares. The surface of a cube is pasted over by $243$ strips $2\times 1$ without overlapping. Prove that the number of bent strips is odd. [i]A. Poliansky[/i]

1985 IMO Longlists, 9

A polyhedron has $12$ faces and is such that: [b][i](i)[/i][/b] all faces are isosceles triangles, [b][i](ii)[/i][/b] all edges have length either $x$ or $y$, [b][i](iii)[/i][/b] at each vertex either $3$ or $6$ edges meet, and [b][i](iv)[/i][/b] all dihedral angles are equal. Find the ratio $x/y.$

2017 Iranian Geometry Olympiad, 5

Sphere $S$ touches a plane. Let $A,B,C,D$ be four points on the plane such that no three of them are collinear. Consider the point $A'$ such that $S$ in tangent to the faces of tetrahedron $A'BCD$. Points $B',C',D'$ are defined similarly. Prove that $A',B',C',D'$ are coplanar and the plane $A'B'C'D'$ touches $S$. [i]Proposed by Alexey Zaslavsky (Russia)[/i]

2012 Today's Calculation Of Integral, 780

Let $n\geq 3$ be integer. Given a regular $n$-polygon $P$ with side length 4 on the plane $z=0$ in the $xyz$-space.Llet $G$ be a circumcenter of $P$. When the center of the sphere $B$ with radius 1 travels round along the sides of $P$, denote by $K_n$ the solid swept by $B$. Answer the following questions. (1) Take two adjacent vertices $P_1,\ P_2$ of $P$. Let $Q$ be the intersection point between the perpendicular dawn from $G$ to $P_1P_2$, prove that $GQ>1$. (2) (i) Express the area of cross section $S(t)$ in terms of $t,\ n$ when $K_n$ is cut by the plane $z=t\ (-1\leq t\leq 1)$. (ii) Express the volume $V(n)$ of $K_n$ in terms of $n$. (3) Denote by $l$ the line which passes through $G$ and perpendicular to the plane $z=0$. Express the volume $W(n)$ of the solid by generated by a rotation of $K_n$ around $l$ in terms of $n$. (4) Find $\lim_{n\to\infty} \frac{V(n)}{W(n)} .$

2015 Sharygin Geometry Olympiad, P24

The insphere of a tetrahedron ABCD with center $O$ touches its faces at points $A_1,B_1,C_1$ and $D_1$. a) Let $P_a$ be a point such that its reflections in lines $OB,OC$ and $OD$ lie on plane $BCD$. Points $P_b, P_c$ and $P_d$ are defined similarly. Prove that lines $A_1P_a,B_1P_b,C_1P_c$ and $D_1P_d$ concur at some point $ P$. b) Let $I$ be the incenter of $A_1B_1C_1D_1$ and $A_2$ the common point of line $A_1I $ with plane $B_1C_1D_1$. Points $B_2, C_2, D_2$ are defined similarly. Prove that $P$ lies inside $A_2B_2C_2D_2$.

1969 IMO Shortlist, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

2002 Croatia National Olympiad, Problem 3

Points $E$ and $F$ are taken on the diagonals $AB_1$ and $CA_1$ of the lateral faces $ABB_1A_1$ and $CAA_1C_1$ of a triangular prism $ABCA_1B_1C_1$ so that $EF\parallel BC_1$. Find the ratio of the lengths of $EF$ and $BC_1$.

2008 Sharygin Geometry Olympiad, 24

(I.Bogdanov, 11) Let $ h$ be the least altitude of a tetrahedron, and $ d$ the least distance between its opposite edges. For what values of $ t$ the inequality $ d>th$ is possible?

1995 Czech And Slovak Olympiad IIIA, 1

Suppose that tetrahedron $ABCD$ satisfies $\angle BAC+\angle CAD+\angle DAB = \angle ABC+\angle CBD+\angle DBA = 180^o$. Prove that $CD \ge AB$.

1999 Croatia National Olympiad, Problem 1

For every edge of a tetrahedron, we consider a plane through its midpoint that is perpendicular to the opposite edge. Prove that these six planes intersect in a point symmetric to the circumcenter of the tetrahedron with respect to its centroid.

2006 Estonia Math Open Junior Contests, 7

A solid figure consisting of unit cubes is shown in the picture. Is it possible to exactly fill a cube with these figures if the side length of the cube is a) 15; b) 30?

1989 Austrian-Polish Competition, 5

Let $A$ be a vertex of a cube $\omega$ circumscribed about a sphere $k$ of radius $1$. We consider lines $g$ through $A$ containing at least one point of $k$. Let $P$ be the intersection point of $g$ and $k$ closer to $A$, and $Q$ be the second intersection point of $g$ and $\omega$. Determine the maximum value of $AP\cdot AQ$ and characterize the lines $g$ yielding the maximum.

1954 Moscow Mathematical Olympiad, 271

Do there exist points $A, B, C, D$ in space, such that $AB = CD = 8, AC = BD = 10$, and $AD = BC = 13$?

1996 Vietnam National Olympiad, 2

Given a trihedral angle Sxyz. A plane (P) not through S cuts Sx,Sy,Sz respectively at A,B,C. On the plane (P), outside triangle ABC, construct triangles DAB,EBC,FCA which are confruent to the triangles SAB,SBC,SCA respectively. Let (T) be the sphere lying inside Sxyz, but not inside the tetrahedron SABC, toucheing the planes containing the faces of SABC. Prove that (T) touches the plane (P) at the circumcenter of triangle DEF.

2007 AMC 12/AHSME, 18

The polynomial $ f(x) \equal{} x^{4} \plus{} ax^{3} \plus{} bx^{2} \plus{} cx \plus{} d$ has real coefficients, and $ f(2i) \equal{} f(2 \plus{} i) \equal{} 0.$ What is $ a \plus{} b \plus{} c \plus{} d?$ $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 16$

1946 Putnam, A3

Tags: 3d geometry
A projectile in flight is observed simultaneously from four radio stations which are situated at the corners of a square of side $b$. The distances of the projectile from the four stations, taken in order around the square, are found to be $R_1 , R_2 , R_3 $ and $R_4$. Show that $$R_{1}^{2}+ R_{3}^{2}= R_{2}^{2}+ R_{4}^{2}.$$ Show also that the height $h$ of the projectile above the ground is given by $$h^{2}=- \frac{1}{2} b^2 +\frac{1}{4}(R_{1}^{2}+R_{2}^{2}+R_{3}^{2}+R_{4}^{2}) -\frac{1}{8 b^{2}}(R_{1}^{4}+R_{2}^{4}+R_{3}^{4}+R_{4}^{4}- 2 R_{1}^{2}R_{3}^{2} -2 R_{2}^{2} R_{4}^{2}).$$

2005 AMC 12/AHSME, 16

Eight spheres of radius 1, one per octant, are each tangent to the coordinate planes. What is the radius of the smallest sphere, centered at the origin, that contains these eight spheres? $ \textbf{(A)}\ \sqrt 2\qquad \textbf{(B)}\ \sqrt 3\qquad \textbf{(C)}\ 1 \plus{} \sqrt 2\qquad \textbf{(D)}\ 1 \plus{} \sqrt 3\qquad \textbf{(E)}\ 3$

1967 IMO Longlists, 32

Determine the volume of the body obtained by cutting the ball of radius $R$ by the trihedron with vertex in the center of that ball, it its dihedral angles are $\alpha, \beta, \gamma.$

2000 Romania National Olympiad, 3

Let $SABC$ be the pyramid where$ m(\angle ASB) = m(\angle BSC) = m(\angle CSA) = 90^o$. Show that, whatever the point $M \in AS$ is and whatever the point $N \in BC$ is, holds the relation $$\frac{1}{MN^2} \le \frac{1}{SB^2} + \frac{1}{SC^2}.$$

2021 Science ON grade VIII, 3

$ABCD$ is a scalene tetrahedron and let $G$ be its baricentre. A plane $\alpha$ passes through $G$ such that it intersects neither the interior of $\Delta BCD$ nor its perimeter. Prove that $$\textnormal{dist}(A,\alpha)=\textnormal{dist}(B,\alpha)+\textnormal{dist}(C,\alpha)+\textnormal{dist}(D,\alpha).$$ [i] (Adapted from folklore)[/i]

1998 Tournament Of Towns, 5

The sum of the length, width, and height of a rectangular parallelepiped will be called its size. Can it happen that one rectangular parallelepiped contains another one of greater size? (A Shen)

2013 Putnam, 1

Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all $20$ integers is $39.$ Show that there are two faces that share a vertex and have the same integer written on them.

2021 IOM, 6

Let $ABCD$ be a tetrahedron and suppose that $M$ is a point inside it such that $\angle MAD=\angle MBC$ and $\angle MDB=\angle MCA$. Prove that $$MA\cdot MB+MC\cdot MD<\max(AD\cdot BC,AC\cdot BD).$$