This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2002 National Olympiad First Round, 24

How many positive integers $n$ are there such that the equation $\left \lfloor \sqrt[3] {7n + 2} \right \rfloor = \left \lfloor \sqrt[3] {7n + 3} \right \rfloor $ does not hold? $ \textbf{a)}\ 0 \qquad\textbf{b)}\ 1 \qquad\textbf{c)}\ 7 \qquad\textbf{d)}\ \text{Infinitely many} \qquad\textbf{e)}\ \text{None of above} $

2009 Putnam, A1

Let $ f$ be a real-valued function on the plane such that for every square $ ABCD$ in the plane, $ f(A)\plus{}f(B)\plus{}f(C)\plus{}f(D)\equal{}0.$ Does it follow that $ f(P)\equal{}0$ for all points $ P$ in the plane?

1994 Chile National Olympiad, 4

Consider a box of dimensions $10$ cm $\times 16$ cm $\times 1$ cm. Determine the maximum number of balls of diameter $ 1$ cm that the box can contain.

2006 Spain Mathematical Olympiad, 2

The dimensions of a wooden octahedron are natural numbers. We painted all its surface (the six faces), cut it by planes parallel to the cubed faces of an edge unit and observed that exactly half of the cubes did not have any painted faces. Prove that the number of octahedra with such property is finite. (It may be useful to keep in mind that $\sqrt[3]{\frac{1}{2}}=1,79 ... <1,8$). [hide=original wording] Las dimensiones de un ortoedro de madera son enteras. Pintamos toda su superficie (las seis caras), lo cortamos mediante planos paralelos a las caras en cubos de una unidad de arista y observamos que exactamente la mitad de los cubos no tienen ninguna cara pintada. Probar que el número de ortoedros con tal propiedad es finito[/hide]

1979 Poland - Second Round, 3

In space there is a line $ k $ and a cube with a vertex $ M $ and edges $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, of length$ 1$. Prove that the length of the orthogonal projection of edge $ MA $ on the line $ k $ is equal to the area of the orthogonal projection of a square with sides $ MB $ and $ MC $ onto a plane perpendicular to the line $ k $. [hide=original wording]W przestrzeni dana jest prosta $ k $ oraz sześcian o wierzchołku $ M $ i krawędziach $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, długości 1. Udowodnić, że długość rzutu prostokątnego krawędzi $ MA $ na prostą $ k $ jest równa polu rzutu prostokątnego kwadratu o bokach $ MB $ i $ MC $ na płaszczyznę prostopadłą do prostej $ k $.[/hide]

2020 BMT Fall, 12

A hollow box (with negligible thickness) shaped like a rectangular prism has a volume of $108$ cubic units. The top of the box is removed, exposing the faces on the inside of the box. What is the minimum possible value for the sum of the areas of the faces on the outside and inside of the box?

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

1980 IMO Shortlist, 15

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

V Soros Olympiad 1998 - 99 (Russia), 11.10

The plane angles at vertex $D$ of the pyramid $ABCD$ are equal to $\alpha$,$\beta$ and $\gamma$ ($\angle CDB = a$). An arbitrary point $M$ is taken on edge $CB$. A ball is inscribed in each of the pyramids $ABDM$ and $ACDM$. Let us draw through $D$ a plane distinct from $BCD$, tangent to both balls and not intersecting the segment connecting the centers of the balls. Let this plane intersect the segment $AM$ at point $P$. What is $\angle ADP$ equal to?

2010 Purple Comet Problems, 16

Half the volume of a 12 foot high cone-shaped pile is grade A ore while the other half is grade B ore. The pile is worth \$62. One-third of the volume of a similarly shaped 18 foot pile is grade A ore while the other two-thirds is grade B ore. The second pile is worth \$162. Two-thirds of the volume of a similarly shaped 24 foot pile is grade A ore while the other one-third is grade B ore. What is the value in dollars (\$) of the 24 foot pile?

1997 National High School Mathematics League, 2

In regular tetrahedron $ABCD$, $E\in AB,F\in CD$, satisfying: $\frac{|AE|}{|EB|}=\frac{|CF|}{|FD|}=\lambda(\lambda\in R_+)$. Note that $f(\lambda)=\alpha_{\lambda}+\beta_{\lambda}$, where $\alpha_{\lambda}=<EF,AC>,\alpha_{\lambda}=<EF,BD>$. $\text{(A)}$ $f(\lambda)$ increases in $(0,+\infty)$ $\text{(B)}$ $f(\lambda)$ decreases in $(0,+\infty)$ $\text{(C)}$ $f(\lambda)$ increases in $(0,1)$, decreases in $(1,+\infty)$ $\text{(D)}$ $f(\lambda)$ is a fixed value in $(0,+\infty)$

2020 AMC 10, 19

As shown in the figure below a regular dodecahedron (the polyhedron consisting of 12 congruent regular pentagonal faces) floats in space with two horizontal faces. Note that there is a ring of five slanted faces adjacent to the top face, and a ring of five slanted faces adjacent to the bottom face. How many ways are there to move from the top face to the bottom face via a sequence of adjacent faces so that each face is visited at most once and moves are not permitted from the bottom ring to the top ring? [asy] import graph; unitsize(4.5cm); pair A = (0.082, 0.378); pair B = (0.091, 0.649); pair C = (0.249, 0.899); pair D = (0.479, 0.939); pair E = (0.758, 0.893); pair F = (0.862, 0.658); pair G = (0.924, 0.403); pair H = (0.747, 0.194); pair I = (0.526, 0.075); pair J = (0.251, 0.170); pair K = (0.568, 0.234); pair L = (0.262, 0.449); pair M = (0.373, 0.813); pair N = (0.731, 0.813); pair O = (0.851, 0.461); path[] f; f[0] = A--B--C--M--L--cycle; f[1] = C--D--E--N--M--cycle; f[2] = E--F--G--O--N--cycle; f[3] = G--H--I--K--O--cycle; f[4] = I--J--A--L--K--cycle; f[5] = K--L--M--N--O--cycle; draw(f[0]); axialshade(f[1], white, M, gray(0.5), (C+2*D)/3); draw(f[1]); filldraw(f[2], gray); filldraw(f[3], gray); axialshade(f[4], white, L, gray(0.7), J); draw(f[4]); draw(f[5]); [/asy] $\textbf{(A) } 125 \qquad \textbf{(B) } 250 \qquad \textbf{(C) } 405 \qquad \textbf{(D) } 640 \qquad \textbf{(E) } 810$

1985 All Soviet Union Mathematical Olympiad, 417

The $ABCDA_1B_1C_1D_1$ cube has unit length edges. Find the distance between two circumferences, one of those is inscribed into the $ABCD$ base, and another comes through points $A,C$ and $B_1$ .

1986 IMO Longlists, 80

Let $ABCD$ be a tetrahedron and $O$ its incenter, and let the line $OD$ be perpendicular to $AD$. Find the angle between the planes $DOB$ and $DOC.$

2023 Israel TST, P2

Let $SABCDE$ be a pyramid whose base $ABCDE$ is a regular pentagon and whose other faces are acute triangles. The altitudes from $S$ to the base sides dissect them into ten triangles, colored red and blue alternatingly. Prove that the sum of the squared areas of the red triangles is equal to the sum of the squared areas of the blue triangles.

1958 Czech and Slovak Olympiad III A, 4

Consider positive numbers $d,v$ such that $d>v$. Moreover, consider two perpendicular skew lines $p,q$ of distance $v$ (that is direction vectors of both lines are orthogonal and $\min_{X\in p,Y\in q}XY = v$). Finally, consider all line segments $PQ$ such that $P\in p, Q\in q, PQ=d$. a) Find the locus of all points $P$. b) Find the locus of all midpoints of segments $PQ$.

2010 Tournament Of Towns, 3

A $1\times 1\times 1$ cube is placed on an $8\times 8$ chessboard so that its bottom face coincides with a square of the chessboard. The cube rolls over a bottom edge so that the adjacent face now lands on the chessboard. In this way, the cube rolls around the chessboard, landing on each square at least once. Is it possible that a particular face of the cube never lands on the chessboard?

2010 Iran MO (3rd Round), 1

Prove that the group of orientation-preserving symmetries of the cube is isomorphic to $S_4$ (the group of permutations of $\{1,2,3,4\}$).(20 points)

PEN P Problems, 2

Show that each integer $n$ can be written as the sum of five perfect cubes (not necessarily positive).

2021 Malaysia IMONST 2, 3

Given a cube. On each edge of the cube, we write a number, either $1$ or $-1$. For each face of the cube, we multiply the four numbers on the edges of this face, and write the product on this face. Finally, we add all the eighteen numbers that we wrote down on the edges and face of the cube. What is the smallest possible sum that we can get?

2014 Math Prize for Girls Olympiad, 3

Say that a positive integer is [i]sweet[/i] if it uses only the digits 0, 1, 2, 4, and 8. For instance, 2014 is sweet. There are sweet integers whose squares are sweet: some examples (not necessarily the smallest) are 1, 2, 11, 12, 20, 100, 202, and 210. There are sweet integers whose cubes are sweet: some examples (not necessarily the smallest) are 1, 2, 10, 20, 200, 202, 281, and 2424. Prove that there exists a sweet positive integer $n$ whose square and cube are both sweet, such that the sum of all the digits of $n$ is 2014.

1994 Bundeswettbewerb Mathematik, 3

Let $A$ and $B$ be two spheres of different radii, both inscribed in a cone $K$. There are $m$ other, congruent spheres arranged in a ring such that each of them touches $A, B, K$ and two of the other spheres. Prove that this is possible for at most three values of $m.$

2013 Purple Comet Problems, 28

Let $A$, $B$, $C$, $D$, $E$, $F$, $G$, $H$ be the eight vertices of a $30 \times30\times30$ cube as shown. The two figures $ACFH$ and $BDEG$ are congruent regular tetrahedra. Find the volume of the intersection of these two tetrahedra. [asy] import graph; size(12.57cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); pen dotstyle = black; real xmin = -3.79, xmax = 8.79, ymin = 0.32, ymax = 4.18; /* image dimensions */ pen ffqqtt = rgb(1,0,0.2); pen ffzzzz = rgb(1,0.6,0.6); pen zzzzff = rgb(0.6,0.6,1); draw((6,3.5)--(8,1.5), zzzzff); draw((7,3)--(5,1), blue); draw((6,3.5)--(7,3), blue); draw((6,3.5)--(5,1), blue); draw((5,1)--(8,1.5), blue); draw((7,3)--(8,1.5), blue); draw((4,3.5)--(2,1.5), ffzzzz); draw((1,3)--(2,1.5), ffqqtt); draw((2,1.5)--(3,1), ffqqtt); draw((1,3)--(3,1), ffqqtt); draw((4,3.5)--(1,3), ffqqtt); draw((4,3.5)--(3,1), ffqqtt); draw((-3,3)--(-3,1), linewidth(1.6)); draw((-3,3)--(-1,3), linewidth(1.6)); draw((-1,3)--(-1,1), linewidth(1.6)); draw((-3,1)--(-1,1), linewidth(1.6)); draw((-3,3)--(-2,3.5), linewidth(1.6)); draw((-2,3.5)--(0,3.5), linewidth(1.6)); draw((0,3.5)--(-1,3), linewidth(1.6)); draw((0,3.5)--(0,1.5), linewidth(1.6)); draw((0,1.5)--(-1,1), linewidth(1.6)); draw((-3,1)--(-2,1.5)); draw((-2,1.5)--(0,1.5)); draw((-2,3.5)--(-2,1.5)); draw((1,3)--(1,1), linewidth(1.6)); draw((1,3)--(3,3), linewidth(1.6)); draw((3,3)--(3,1), linewidth(1.6)); draw((1,1)--(3,1), linewidth(1.6)); draw((1,3)--(2,3.5), linewidth(1.6)); draw((2,3.5)--(4,3.5), linewidth(1.6)); draw((4,3.5)--(3,3), linewidth(1.6)); draw((4,3.5)--(4,1.5), linewidth(1.6)); draw((4,1.5)--(3,1), linewidth(1.6)); draw((1,1)--(2,1.5)); draw((2,3.5)--(2,1.5)); draw((2,1.5)--(4,1.5)); draw((5,3)--(5,1), linewidth(1.6)); draw((5,3)--(6,3.5), linewidth(1.6)); draw((5,3)--(7,3), linewidth(1.6)); draw((7,3)--(7,1), linewidth(1.6)); draw((5,1)--(7,1), linewidth(1.6)); draw((6,3.5)--(8,3.5), linewidth(1.6)); draw((7,3)--(8,3.5), linewidth(1.6)); draw((7,1)--(8,1.5)); draw((5,1)--(6,1.5)); draw((6,3.5)--(6,1.5)); draw((6,1.5)--(8,1.5)); draw((8,3.5)--(8,1.5), linewidth(1.6)); label("$ A $",(-3.4,3.41),SE*labelscalefactor); label("$ D $",(-2.16,4.05),SE*labelscalefactor); label("$ H $",(-2.39,1.9),SE*labelscalefactor); label("$ E $",(-3.4,1.13),SE*labelscalefactor); label("$ F $",(-1.08,0.93),SE*labelscalefactor); label("$ G $",(0.12,1.76),SE*labelscalefactor); label("$ B $",(-0.88,3.05),SE*labelscalefactor); label("$ C $",(0.17,3.85),SE*labelscalefactor); label("$ A $",(0.73,3.5),SE*labelscalefactor); label("$ B $",(3.07,3.08),SE*labelscalefactor); label("$ C $",(4.12,3.93),SE*labelscalefactor); label("$ D $",(1.69,4.07),SE*labelscalefactor); label("$ E $",(0.60,1.15),SE*labelscalefactor); label("$ F $",(2.96,0.95),SE*labelscalefactor); label("$ G $",(4.12,1.67),SE*labelscalefactor); label("$ H $",(1.55,1.82),SE*labelscalefactor); label("$ A $",(4.71,3.47),SE*labelscalefactor); label("$ B $",(7.14,3.10),SE*labelscalefactor); label("$ C $",(8.14,3.82),SE*labelscalefactor); label("$ D $",(5.78,4.08),SE*labelscalefactor); label("$ E $",(4.6,1.13),SE*labelscalefactor); label("$ F $",(6.93,0.96),SE*labelscalefactor); label("$ G $",(8.07,1.64),SE*labelscalefactor); label("$ H $",(5.65,1.90),SE*labelscalefactor); dot((-3,3),dotstyle); dot((-3,1),dotstyle); dot((-1,3),dotstyle); dot((-1,1),dotstyle); dot((-2,3.5),dotstyle); dot((0,3.5),dotstyle); dot((0,1.5),dotstyle); dot((-2,1.5),dotstyle); dot((1,3),dotstyle); dot((1,1),dotstyle); dot((3,3),dotstyle); dot((3,1),dotstyle); dot((2,3.5),dotstyle); dot((4,3.5),dotstyle); dot((4,1.5),dotstyle); dot((2,1.5),dotstyle); dot((5,3),dotstyle); dot((5,1),dotstyle); dot((6,3.5),dotstyle); dot((7,3),dotstyle); dot((7,1),dotstyle); dot((8,3.5),dotstyle); dot((8,1.5),dotstyle); dot((6,1.5),dotstyle); [/asy]

2011 USAMTS Problems, 4

Renata the robot packs boxes in a warehouse. Each box is a cube of side length $1$ foot. The warehouse floor is a square, $12$ feet on each side, and is divided into a $12$-by-$12$ grid of square tiles $1$ foot on a side. Each tile can either support one box or be empty. The warehouse has exactly one door, which opens onto one of the corner tiles. Renata fits on a tile and can roll between tiles that share a side. To access a box, Renata must be able to roll along a path of empty tiles starting at the door and ending at a tile sharing a side with that box. [list=a] [*]Show how Renata can pack $91$ boxes into the warehouse and still be able to access any box. [*]Show that Renata [b]cannot[/b] pack $95$ boxes into the warehouse and still be able to access any box.[/list]

1966 IMO Shortlist, 20

Given three congruent rectangles in the space. Their centers coincide, but the planes they lie in are mutually perpendicular. For any two of the three rectangles, the line of intersection of the planes of these two rectangles contains one midparallel of one rectangle and one midparallel of the other rectangle, and these two midparallels have different lengths. Consider the convex polyhedron whose vertices are the vertices of the rectangles. [b]a.)[/b] What is the volume of this polyhedron ? [b]b.)[/b] Can this polyhedron turn out to be a regular polyhedron ? If yes, what is the condition for this polyhedron to be regular ?