This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1971 IMO Longlists, 50

Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.

1998 French Mathematical Olympiad, Problem 1

A tetrahedron $ABCD$ satisfies the following conditions: the edges $AB,AC$ and $AD$ are pairwise orthogonal, $AB=3$ and $CD=\sqrt2$. Find the minimum possible value of $$BC^6+BD^6-AC^6-AD^6.$$

2002 AIME Problems, 2

Three vertices of a cube are $P=(7,12,10),$ $Q=(8,8,1),$ and $R=(11,3,9).$ What is the surface area of the cube?

1991 China Team Selection Test, 3

All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called [i]excentric[/i]. The[i] excentricity [/i]of a vertex $A$, namely $S_A$, is defined as the number of excentric angles it has. Prove that there exist two vertices $B$ and $C$ such that $S_B + S_C \leq 4$.

1965 German National Olympiad, 3

Two parallelograms $ABCD$ and $A'B'C'D'$ are given in space. Points $A'',B'',C'',D''$ divide the segments $AA',BB',CC',DD'$ in the same ratio. What can be said about the quadrilateral $A''B''C''D''$?

2005 Harvard-MIT Mathematics Tournament, 1

The volume of a cube (in cubic inches) plus three times the total length of its edges (in inches) is equal to twice its surface area (in square inches). How many inches long is its long diagonal?

2005 Harvard-MIT Mathematics Tournament, 7

Let $ABCD$ be a tetrahedron such that edges $AB$, $AC$, and $AD$ are mutually perpendicular. Let the areas of triangles $ABC$, $ACD$, and $ADB$ be denoted by $x$, $y$, and $z$, respectively. In terms of $x$, $y$, and $z$, find the area of triangle $BCD$.

2000 Austria Beginners' Competition, 4

Let $ABCDEFG$ be half of a regular dodecagon . Let $P$ be the intersection of the lines $AB$ and $GF$, and let $Q$ be the intersection of the lines $AC$ and $GE$. Prove that $Q$ is the circumcenter of the triangle $AGP$.

2010 Tournament Of Towns, 3

Is it possible to cover the surface of a regular octahedron by several regular hexagons without gaps and overlaps? (A regular octahedron has $6$ vertices, each face is an equilateral triangle, each vertex belongs to $4$ faces.)

2007 ITest, 27

The face diagonal of a cube has length $4$. Find the value of $n$ given that $n\sqrt2$ is the $\textit{volume}$ of the cube.

2002 Iran Team Selection Test, 11

A $10\times10\times10$ cube has $1000$ unit cubes. $500$ of them are coloured black and $500$ of them are coloured white. Show that there are at least $100$ unit squares, being the common face of a white and a black unit cube.

1964 Polish MO Finals, 6

Given is a pyramid $SABCD$ whose base is a convex quadrilateral $ ABCD $ with perpendicular diagonals $ AC $ and $ BD $, and the orthogonal projection of vertex $S$ onto the base is the point $0$ of the intersection of the diagonals of the base. Prove that the orthogonal projections of point $O$ onto the lateral faces of the pyramid lie on the circle.

1987 Polish MO Finals, 4

Let $S$ be the set of all tetrahedra which satisfy: (1) the base has area $1$, (2) the total face area is $4$, and (3) the angles between the base and the other three faces are all equal. Find the element of $S$ which has the largest volume.

1984 Bulgaria National Olympiad, Problem 6

Let there be given a pyramid $SABCD$ whose base $ABCD$ is a parallelogram. Let $N$ be the midpoint of $BC$. A plane $\lambda$ intersects the lines $SC,SA,AB$ at points $P,Q,R$ respectively such that $\overline{CP}/\overline{CS}=\overline{SQ}/\overline{SA}=\overline{AR}/\overline{AB}$. A point $M$ on the line $SD$ is such that the line $MN$ is parallel to $\lambda$. Show that the locus of points $M$, when $\lambda$ takes all possible positions, is a segment of the length $\frac{\sqrt5}2SD$.

2002 Poland - Second Round, 2

Triangle $ABC$ with $\angle BAC=90^{\circ}$ is the base of the pyramid $ABCD$. Moreover, $AD=BD$ and $AB=CD$. Prove that $\angle ACD\ge 30^{\circ}$.

1985 Poland - Second Round, 6

There are various points in space $ A, B, C_0, C_1, C_2 $, with $ |AC_i| = 2 |BC_i| $ for $ i = 0,1,2 $ and $ |C_1C_2|=\frac{4}{3}|AB| $. Prove that the angle $ C_1C_0C_2 $ is right and the points $ A, B, C_1, C_2 $ lie on one plane.

2015 Bangladesh Mathematical Olympiad, 5

A tetrahedron is a polyhedron composed of four triangular faces. Faces $ABC$ and $BCD$ of a tetrahedron $ABCD$ meet at an angle of $\pi/6$. The area of triangle $\triangle ABC$ is $120$. The area of triangle $\triangle BCD$ is $80$, and $BC = 10$. What is the volume of the tetrahedron? We call the volume of a tetrahedron as one-third the area of it's base times it's height.

1922 Eotvos Mathematical Competition, 1

Given four points $A,B,C,D$ in space, find a plane, $S$, equidistant from all four points and having $A$ and $C$ on one side, $B$ and $D$ on the other.

1951 AMC 12/AHSME, 6

The bottom, side, and front areas of a rectangular box are known. The product of these areas is equal to: $ \textbf{(A)}\ \text{the volume of the box} \qquad\textbf{(B)}\ \text{the square root of the volume} \qquad\textbf{(C)}\ \text{twice the volume}$ $ \textbf{(D)}\ \text{the square of the volume} \qquad\textbf{(E)}\ \text{the cube of the volume}$

1989 Polish MO Finals, 2

Three circles of radius $a$ are drawn on the surface of a sphere of radius $r$. Each pair of circles touches externally and the three circles all lie in one hemisphere. Find the radius of a circle on the surface of the sphere which touches all three circles.

2008 Harvard-MIT Mathematics Tournament, 28

Let $ P$ be a polyhedron where every face is a regular polygon, and every edge has length $ 1$. Each vertex of $ P$ is incident to two regular hexagons and one square. Choose a vertex $ V$ of the polyhedron. Find the volume of the set of all points contained in $ P$ that are closer to $ V$ than to any other vertex.

1998 Tuymaada Olympiad, 8

Given the pyramid $ABCD$. Let $O$ be the midpoint of edge $AC$. Given that $DO$ is the height of the pyramid, $AB=BC=2DO$ and the angle $ABC$ is right. Cut this pyramid into $8$ equal and similar to it pyramids.

1970 Vietnam National Olympiad, 5

A plane $p$ passes through a vertex of a cube so that the three edges at the vertex make equal angles with $p$. Find the cosine of this angle. Find the positions of the feet of the perpendiculars from the vertices of the cube onto $p$. There are 28 lines through two vertices of the cube and 20 planes through three vertices of the cube. Find some relationship between these lines and planes and the plane $p$.

1981 Romania Team Selection Tests, 3.

Determine the lengths of the edges of a right tetrahedron of volume $a^3$ so that the sum of its edges' lengths is minumum.

1979 USAMO, 2

Let $S$ be a great circle with pole $P$. On any great circle through $P$, two points $A$ and $B$ are chosen equidistant from $P$. For any [i] spherical triangle [/i] $ABC$ (the sides are great circles ares), where $C$ is on $S$, prove that the great circle are $CP$ is the angle bisector of angle $C$. [b] Note. [/b] A great circle on a sphere is one whose center is the center of the sphere. A pole of the great circle $S$ is a point $P$ on the sphere such that the diameter through $P$ is perpendicular to the plane of $S$.