This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2010 National Olympiad First Round, 21

A right circular cone and a right cylinder with same height $20$ does not have same circular base but the circles are coplanar and their centers are same. If the cone and the cylinder are at the same side of the plane and their base radii are $20$ and $10$, respectively, what is the ratio of the volume of the part of the cone inside the cylinder over the volume of the part of the cone outside the cylinder? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ \frac{4}{3} \qquad\textbf{(E)}\ 1 $

1976 Bulgaria National Olympiad, Problem 5

It is given a tetrahedron $ABCD$ and a plane $\alpha$ intersecting the three edges passing through $D$. Prove that $\alpha$ divides the surface of the tetrahedron into two parts proportional to the volumes of the bodies formed if and only if $\alpha$ is passing through the center of the inscribed tetrahedron sphere.

2007 All-Russian Olympiad Regional Round, 9.7

An infinite increasing arithmetical progression consists of positive integers and contains a perfect cube. Prove that this progression also contains a term which is a perfect cube but not a perfect square.

IV Soros Olympiad 1997 - 98 (Russia), 11.4

Find the largest value of the area of the projection of the cylinder onto the plane if its radius is $r$ and its height is $h$ (orthogonal projection).

2014 BMT Spring, 13

A cylinder is inscribed within a sphere of radius 10 such that its volume is [i]almost-half[/i] that of the sphere. If [i]almost-half[/i] is defined such that the cylinder has volume $\frac12+\frac{1}{250}$ times the sphere’s volume, find the sum of all possible heights for the cylinder.

2009 Princeton University Math Competition, 6

Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the [i]square[/i] of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).

1996 Tournament Of Towns, (514) 1

Consider three edges $a, b, c$ of a cube such that no two of these edges lie in one plane. Find the locus of points inside the cube which are equidistant from $a$, $b$ and $c$. (V Proizvolov,)

1972 USAMO, 2

A given tetrahedron $ ABCD$ is isoceles, that is, $ AB\equal{}CD$, $ AC\equal{}BD$, $ AD\equal{}BC$. Show that the faces of the tetrahedron are acute-angled triangles.

1967 IMO Shortlist, 2

Prove this proposition: Center the sphere circumscribed around a tetrahedron which coincides with the center of a sphere inscribed in that tetrahedron if and only if the skew edges of the tetrahedron are equal.

2005 International Zhautykov Olympiad, 3

Let SABC be a regular triangular pyramid. Find the set of all points $ D (D! \equal{} S)$ in the space satisfing the equation $ |cos ASD \minus{} 2cosBSD \minus{} 2 cos CSD| \equal{} 3$.

1996 Romania National Olympiad, 4

a) Let $AB CD$ be a regular tetrahedron. On the sides $AB$, $AC$ and $AD$, the points $M$, $N$ and $P$, are considered. Determine the volume of the tetrahedron $AMNP$ in terms of $x, y, z$, where $x=AM$, $y=AN$, $z=AP$. b) Show that for any real numbers $x, y, z, t, u, v \in (0, 1)$ : $$xyz + uv(1- x) + (1- y)(1- v)t + (1- z)(1- w)(1- t) < 1.$$

1955 Polish MO Finals, 6

Through points $ A $ and $ B $ two oblique lines $ m $ and $ n $ are drawn perpendicular to the line $ AB $. On line $ m $ the point $ C $ (different from $ A $) is taken, and on line $ n $ the point $ D $ (different from $ B $) is taken. Given the lengths of segments $ AB = d $ and $ CD = l $ and the angle $ \varphi $ formed by the oblique lines $ m $ and $ n $, calculate the radius of the surface of the sphere passing through the points $ A $, $ B $, $ C $, $ D $.

2016 Israel Team Selection Test, 3

Prove that there exists an ellipsoid touching all edges of an octahedron if and only if the octahedron's diagonals intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve edges, and six vertices such that four faces meat at each vertex. The diagonals of an octahedron are the lines connecting pairs of vertices not connected by an edge).

2008 Federal Competition For Advanced Students, Part 2, 2

Which positive integers are missing in the sequence $ \left\{a_n\right\}$, with $ a_n \equal{} n \plus{} \left[\sqrt n\right] \plus{}\left[\sqrt [3]n\right]$ for all $ n \ge 1$? ($ \left[x\right]$ denotes the largest integer less than or equal to $ x$, i.e. $ g$ with $ g \le x < g \plus{} 1$.)

1988 Romania Team Selection Test, 1

Consider a sphere and a plane $\pi$. For a variable point $M \in \pi$, exterior to the sphere, one considers the circular cone with vertex in $M$ and tangent to the sphere. Find the locus of the centers of all circles which appear as tangent points between the sphere and the cone. [i]Octavian Stanasila[/i]

2003 National High School Mathematics League, 6

In tetrahedron $ABCD$, $AB=1,CD=3$, the distance between $AB$ and $CD$ is $2$, the intersection angle between $AB$ and $CD$ is $\frac{\pi}{3}$, then the volume of tetrahedron $ABCD$ is $\text{(A)}\frac{\sqrt3}{2}\qquad\text{(B)}\frac{1}{2}\qquad\text{(C)}\frac{1}{3}\qquad\text{(D)}\frac{\sqrt3}{3}$

2009 AMC 8, 17

The positive integers $ x$ and $ y$ are the two smallest positive integers for which the product of $ 360$ and $ x$ is a square and the product of $ 360$ and $ y$ is a cube. What is the sum of $ x$ and $ y$? $ \textbf{(A)}\ 80 \qquad \textbf{(B)}\ 85 \qquad \textbf{(C)}\ 115 \qquad \textbf{(D)}\ 165 \qquad \textbf{(E)}\ 610$

2016 CHMMC (Fall), 12

For a positive real number $a$, let $C$ be the cube with vertices at $(\pm a, \pm a, \pm a)$ and let $T$ be the tetrahedron with vertices at $(2a,2a,2a),(2a, -2a, -2a),(-2a, 2a, -2a),(-2a, -2a, -2a)$. If the intersection of $T$ and $C$ has volume $ka^3$ for some $k$, find $k$.

1993 ITAMO, 6

A unit cube $C$ is rotated around one of its diagonals for the angle $\pi /3$ to form a cube $C'$. Find the volume of the intersection of $C$ and $C'$.

PEN H Problems, 41

Suppose that $A=1,2,$ or $3$. Let $a$ and $b$ be relatively prime integers such that $a^{2}+Ab^2 =s^3$ for some integer $s$. Then, there are integers $u$ and $v$ such that $s=u^2 +Av^2$, $a =u^3 - 3Avu^2$, and $b=3u^{2}v -Av^3$.

Kvant 2022, M2685

Let $ABCD$ be a tetrahedron and suppose that $M$ is a point inside it such that $\angle MAD=\angle MBC$ and $\angle MDB=\angle MCA$. Prove that $$MA\cdot MB+MC\cdot MD<\max(AD\cdot BC,AC\cdot BD).$$

2022 HMIC, 2

Does there exist a regular pentagon whose vertices lie on the edges of a cube?

1971 Polish MO Finals, 6

A regular tetrahedron with unit edge length is given. Prove that: (a) There exist four points on the surface $S$ of the tetrahedron, such that the distance from any point of the surface to one of these four points does not exceed $1/2$; (b) There do not exist three points with this property. The distance between two points on surface $S$ is defined as the length of the shortest polygonal line going over $S$ and connecting the two points.

2016 PUMaC Combinatorics A, 1

Chitoge is painting a cube; she can paint each face either black or white, but she wants no vertex of the cube to be touching three faces of the same color. In how many ways can Chitoge paint the cube? Two paintings of a cube are considered to be the same if you can rotate one cube so that it looks like the other cube.

2023 AIME, 14

A cube-shaped container has vertices $A$, $B$, $C$, and $D$ where $\overline{AB}$ and $\overline{CD}$ are parallel edges of the cube, and $\overline{AC}$ and $\overline{BD}$ are diagonals of the faces of the cube. Vertex $A$ of the cube is set on a horizontal plane $\mathcal P$ so that the plane of the rectangle $ABCD$ is perpendicular to $\mathcal P$, vertex $B$ is $2$ meters above $\mathcal P$, vertex $C$ is $8$ meters above $\mathcal P$, and vertex $D$ is $10$ meters above $\mathcal P$. The cube contains water whose surface is $7$ meters above $\mathcal P$. The volume of the water is $\tfrac mn$ cubic meters, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(250); defaultpen(linewidth(0.6)); pair A = origin, B = (6,3), X = rotate(40)*B, Y = rotate(70)*X, C = X+Y, Z = X+B, D = B+C, W = B+Y; pair P1 = 0.8*C+0.2*Y, P2 = 2/3*C+1/3*X, P3 = 0.2*D+0.8*Z, P4 = 0.63*D+0.37*W; pair E = (-20,6), F = (-6,-5), G = (18,-2), H = (9,8); filldraw(E--F--G--H--cycle,rgb(0.98,0.98,0.2)); fill(A--Y--P1--P4--P3--Z--B--cycle,rgb(0.35,0.7,0.9)); draw(A--B--Z--X--A--Y--C--X^^C--D--Z); draw(P1--P2--P3--P4--cycle^^D--P4); dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N); dot("$D$",D,N); label("$\mathcal P$",(-13,4.5)); [/asy]