This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1984 USAMO, 5

$P(x)$ is a polynomial of degree $3n$ such that \begin{eqnarray*} P(0) = P(3) = \cdots &=& P(3n) = 2, \\ P(1) = P(4) = \cdots &=& P(3n-2) = 1, \\ P(2) = P(5) = \cdots &=& P(3n-1) = 0, \quad\text{ and }\\ && P(3n+1) = 730.\end{eqnarray*} Determine $n$.

1984 Bundeswettbewerb Mathematik, 4

A sphere is touched by all the four sides of a (space) quadrilateral. Prove that all the four touching points are in the same plane.

2002 AMC 12/AHSME, 9

Two walls and the ceiling of a room meet at right angles at point $P$. A fly is in the air one meter from one wall, eight meters from the other wall, and $9$ meters from point $P$. How many meters is the fly from the ceiling? $\textbf{(A) }\sqrt{13}\qquad\textbf{(B) }\sqrt{14}\qquad\textbf{(C) }\sqrt{15}\qquad\textbf{(D) }4\qquad\textbf{(E) }\sqrt{17}$

2011 AIME Problems, 13

A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labelled $A$. The three vertices adjacent to vertex $A$ are at heights 10, 11, and 12 above the plane. The distance from vertex $A$ to the plane can be expressed as $\tfrac{r-\sqrt{s}}{t}$, where $r$, $s$, and $t$ are positive integers, and $r+s+t<1000$. Find $r+s+t$.

2000 ITAMO, 3

A pyramid with the base $ABCD$ and the top $V$ is inscribed in a sphere. Let $AD = 2BC$ and let the rays $AB$ and $DC$ intersect in point $E$. Compute the ratio of the volume of the pyramid $VAED$ to the volume of the pyramid $VABCD$.

1960 AMC 12/AHSME, 24

If $\log_{2x}216 = x$, where $x$ is real, then $x$ is: $ \textbf{(A)}\ \text{A non-square, non-cube integer} \qquad$ $\textbf{(B)}\ \text{A non-square, non-cube, non-integral rational number} \qquad$ $\textbf{(C)}\ \text{An irrational number} \qquad$ $\textbf{(D)}\ \text{A perfect square}\qquad$ $\textbf{(E)}\ \text{A perfect cube} $

1976 IMO Longlists, 51

Four swallows are catching a fly. At first, the swallows are at the four vertices of a tetrahedron, and the fly is in its interior. Their maximal speeds are equal. Prove that the swallows can catch the fly.

1998 Dutch Mathematical Olympiad, 2

Let $TABCD$ be a pyramid with top vertex $T$, such that its base $ABCD$ is a square of side length 4. It is given that, among the triangles $TAB$, $TBC$, $TCD$ and $TDA$, one can find an isosceles triangle and a right-angled triangle. Find all possible values for the volume of the pyramid.

2015 AoPS Mathematical Olympiad, 2

In tetrahedron $ABCD$, let $V$ be the volume of the tetrahedron and $R$ the radius of the sphere that it tangent to all four faces of the tetrahedron. Let $P$ be the surface area of the tetrahedron. Prove that $$r=\frac{3V}{P}.$$ [i]Proposed by CaptainFlint.[/i]

2023 All-Russian Olympiad Regional Round, 9.10

A $100 \times 100 \times 100$ cube is divided into a million unit cubes and in each small cube there is a light bulb. Three faces $100 \times 100$ of the large cube having a common vertex are painted: one in red, one in blue and the other in green. Call a $\textit{column}$ a set of $100$ cubes forming a block $1 \times 1 \times 100$. Each of the $30 000$ columns have one painted end cell, on which there is a switch. After pressing a switch, the states of all light bulbs of this column are changed. Petya pressed several switches, getting a situation with exactly $k$ lamps on. Prove that Vasya can press several switches so that all lamps are off, but by using no more than $\frac {k} {100}$ switches on the red face.

1973 IMO Shortlist, 5

A circle of radius 1 is located in a right-angled trihedron and touches all its faces. Find the locus of centers of such circles.

2005 AMC 12/AHSME, 25

Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex? $ \textbf{(A)}\ \frac {5}{256} \qquad \textbf{(B)}\ \frac {21}{1024} \qquad \textbf{(C)}\ \frac {11}{512} \qquad \textbf{(D)}\ \frac {23}{1024} \qquad \textbf{(E)}\ \frac {3}{128}$

2009 Stanford Mathematics Tournament, 2

Factor completely the expression $(a-b)^3+(b-c)^3+(c-a)^3$

2019 IOM, 5

We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic. [i] Tibor Bakos and Géza Kós [/i]

2000 Harvard-MIT Mathematics Tournament, 37

A cone with semivertical angle $30^{\circ}$ is half filled with water. What is the angle it must be tilted by so that water starts spilling?

1976 IMO Shortlist, 6

A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.

2021 Yasinsky Geometry Olympiad, 6

Three lines were drawn through the point $X$ in space. These lines crossed some sphere at six points. It turned out that the distances from point $X$ to some five of them are equal to $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm. What can be the distance from point $X$ to the sixth point? (Alexey Panasenko)

1984 Tournament Of Towns, (061) O2

Six altitudes are constructed from the three vertices of the base of a tetrahedron to the opposite sides of the three lateral faces. Prove that all three straight lines joining two base points of the altitudes in each lateral face are parallel to a certain plane. (IF Sharygin, Moscow)

1988 IMO Longlists, 66

Let $C$ be a cube with edges of length 2. Construct a solid with fourteen faces by cutting off all eight corners at $C,$ keeping the new faces perpendicular to the diagonals of the cube, and keeping the newly formed faces indentical. If at the conclusion of this process the fourteen faces so have the same area, find the area of each of face of the new solid.

1965 Poland - Second Round, 6

Prove that there is no polyhedron whose every plane section is a triangle.

2011 Flanders Math Olympiad, 2

The area of the ground plane of a truncated cone $K$ is four times as large as the surface of the top surface. A sphere $B$ is circumscribed in $K$, that is to say that $B$ touches both the top surface and the base and the sides. Calculate ratio volume $B :$ Volume $K$.

2005 National High School Mathematics League, 2

Four points in space $A,B,C,D$ satisfy that $|AB|=3,|BC|=7,|CD|=11,|DA|=9$, then the number of values of $\overrightarrow{AC}\cdot\overrightarrow{BD}$ is $\text{(A)}$ Only one. $\text{(B)}$ Two. $\text{(C)}$ Three. $\text{(D)}$ Infinitely many.

2006 Bundeswettbewerb Mathematik, 2

Prove that there are no integers $x,y$ for that it is $x^3+y^3=4\cdot(x^2y+xy^2+1)$.

2005 Paraguay Mathematical Olympiad, 2

If you multiply the number of faces that a pyramid has with the number of edges of the pyramid, you get $5.100$. Determine the number of faces of the pyramid.

1992 Poland - First Round, 10

Let $C$ be a cube and let $f: C \longrightarrow C$ be a surjection with $|PQ| \geq |f(P)f(Q)|$ for all $P,Q \in C$. Prove that $f$ is an isometry.