This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1977 AMC 12/AHSME, 23

If the solutions of the equation $x^2+px+q=0$ are the cubes of the solutions of the equation $x^2+mx+n=0$, then $\textbf{(A) }p=m^3+3mn\qquad\textbf{(B) }p=m^3-3mn\qquad$ $\textbf{(C) }p+q=m^3\qquad\textbf{(D) }\left(\frac{m}{n}\right)^2=\frac{p}{q}\qquad \textbf{(E) }\text{none of these}$

2006 Austrian-Polish Competition, 3

$ABCD$ is a tetrahedron. Let $K$ be the center of the incircle of $CBD$. Let $M$ be the center of the incircle of $ABD$. Let $L$ be the gravycenter of $DAC$. Let $N$ be the gravycenter of $BAC$. Suppose $AK$, $BL$, $CM$, $DN$ have one common point. Is $ABCD$ necessarily regular?

1988 Poland - Second Round, 6

Given is a convex polyhedron with $ k $ faces $ S_1, \ldots, S_k $. Let us denote the vector of length 1 perpendicular to the wall $ S_i $ ($ i = 1, \ldots, k $) directed outside the given polyhedron by $ \overrightarrow{n_i} $, and the surface area of this wall by $ P_i $. Prove that $$ \sum_{i=1}^k P_i \cdot \overrightarrow{n_i} = \overrightarrow{0}.$$

2004 Indonesia MO, 1

Determine the number of positive odd and even factor of $ 5^6\minus{}1$.

PEN P Problems, 5

Show that any positive rational number can be represented as the sum of three positive rational cubes.

2017 District Olympiad, 4

An ant can move from a vertex of a cube to the opposite side of its diagonal only on the edges and the diagonals of the faces such that it doesn’t trespass a second time through the path made. Find the distance of the maximum journey this ant can make.

2006 Polish MO Finals, 2

Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.

1991 Vietnam Team Selection Test, 1

Let $T$ be an arbitrary tetrahedron satisfying the following conditions: [b]I.[/b] Each its side has length not greater than 1, [b]II.[/b] Each of its faces is a right triangle. Let $s(T) = S^2_{ABC} + S^2_{BCD} + S^2_{CDA} + S^2_{DAB}$. Find the maximal possible value of $s(T)$.

1987 IMO Longlists, 38

Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? [i]Proposed by Iceland.[/i]

2017 AMC 10, 11

Tags: 3d geometry
The region consisting of all points in three-dimensional space within $3$ units of line segment $\overline{AB}$ has volume $216\pi$. What is the length $AB$? $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 24$

2019 BMT Spring, Tie 4

Consider a regular triangular pyramid with base $\vartriangle ABC$ and apex $D$. If we have $AB = BC =AC = 6$ and $AD = BD = CD = 4$, calculate the surface area of the circumsphere of the pyramid.

1972 Poland - Second Round, 4

A cube with edge length $ n $ is divided into $ n^3 $ unit cubes by planes parallel to its faces. How many pairs of such unit cubes exist that have no more than two vertices in common?

1981 All Soviet Union Mathematical Olympiad, 326

The segments $[AD], [BE]$ and $[CF]$ are the side edges of the right triangle prism. (the equilateral triangle is a base) Find all the points in its base $ABC$, situated on the equal distances from the $(AE), (BF)$ and $(CD)$ lines.

2015 India PRMO, 4

$4.$ How many line segments have both their endpoints located at the vertices of a given cube $?$

2021 HMNT, 10

Three faces $X , Y, Z$ of a unit cube share a common vertex. Suppose the projections of $X , Y, Z$ onto a fixed plane $P$ have areas $x, y, z$, respectively. If $x : y : z = 6 : 10 : 15$, then $x + y + z$ can be written as $m/n$ , where $m, n$ are positive integers and $gcd(m, n) = 1$. Find $100m + n$.

2015 AMC 8, 12

How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have? $\textbf{(A) }6 \qquad\textbf{(B) }12 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 24 \qquad \textbf{(E) } 36$ [asy] import three; currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */ draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle); draw((0,0,0)--(0,0,1)); draw((0,1,0)--(0,1,1)); draw((1,1,0)--(1,1,1)); draw((1,0,0)--(1,0,1)); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle); label("$D$",(0,0,0),S); label("$A$",(0,0,1),N); label("$H$",(0,1,0),S); label("$E$",(0,1,1),N); label("$C$",(1,0,0),S); label("$B$",(1,0,1),N); label("$G$",(1,1,0),S); label("$F$",(1,1,1),N); [/asy]

2021 Purple Comet Problems, 8

Fiona had a solid rectangular block of cheese that measured $6$ centimeters from left to right, $5$ centimeters from front to back, and $4$ centimeters from top to bottom. Fiona took a sharp knife and sliced off a $1$ centimeter thick slice from the left side of the block and a $1$ centimeter slice from the right side of the block. After that, she sliced off a $1$ centimeter thick slice from the front side of the remaining block and a $1$ centimeter slice from the back side of the remaining block. Finally, Fiona sliced off a $1$ centimeter slice from the top of the remaining block and a $1$ centimeter slice from the bottom of the remaining block. Fiona now has $7$ blocks of cheese. Find the total surface area of those seven blocks of cheese measured in square centimeters.

2011 AMC 12/AHSME, 9

Two real numbers are selected independently at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero? $ \textbf{(A)}\ \frac{1}{9} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{4}{9} \qquad \textbf{(D)}\ \frac{5}{9} \qquad \textbf{(E)}\ \frac{2}{3} $

1998 Romania National Olympiad, 4

Let $A_1A_2...A_n$ be a regular polygon ($n > 4$), $T$ be the common point of $A_1A_2$ and $A_{n-1}A_n$ and $M$ be a point in the interior of the triangle $A_1A_nT$. Show that the equality $$\sum_{i=1}^{n-1} \frac{\sin^2 \left(\angle A_iMA_{i+1}\right)}{d(M,A_iA_{i+1}}=\frac{\sin^2 \left(\angle A_1MA_n\right)}{d(M,A_1A_n} $$ holds if and only if $M$ belongs to the circumcircle of the polygon.

2019 Tournament Of Towns, 6

A cube consisting of $(2N)^3$ unit cubes is pierced by several needles parallel to the edges of the cube (each needle pierces exactly $2N$ unit cubes). Each unit cube is pierced by at least one needle. Let us call any subset of these needles “regular” if there are no two needles in this subset that pierce the same unit cube. a) Prove that there exists a regular subset consisting of $2N^2$ needles such that all of them have either the same direction or two different directions. b) What is the maximum size of a regular subset that does exist for sure? (Nikita Gladkov, Alexandr Zimin)

1987 IMO Shortlist, 10

Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? [i]Proposed by Iceland.[/i]

1992 National High School Mathematics League, 9

From eight edges and eight diagonal of surfaces of a cube, choose $k$ lines. If any two lines of them are skew lines, then the maximum value of $k$ is________.

2006 All-Russian Olympiad, 2

If an integer $a > 1$ is given such that $\left(a-1\right)^3+a^3+\left(a+1\right)^3$ is the cube of an integer, then show that $4\mid a$.

1985 AIME Problems, 15

Three 12 cm $\times$ 12 cm squares are each cut into two pieces $A$ and $B$, as shown in the first figure below, by joining the midpoints of two adjacent sides. These six pieces are then attached to a regular hexagon, as shown in the second figure, so as to fold into a polyhedron. What is the volume (in $\text{cm}^3$) of this polyhedron? [asy] defaultpen(fontsize(10)); size(250); draw(shift(0, sqrt(3)+1)*scale(2)*rotate(45)*polygon(4)); draw(shift(-sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(165)*polygon(4)); draw(shift(sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(285)*polygon(4)); filldraw(scale(2)*polygon(6), white, black); pair X=(2,0)+sqrt(2)*dir(75), Y=(-2,0)+sqrt(2)*dir(105), Z=(2*dir(300))+sqrt(2)*dir(225); pair[] roots={2*dir(0), 2*dir(60), 2*dir(120), 2*dir(180), 2*dir(240), 2*dir(300)}; draw(roots[0]--X--roots[1]); label("$B$", centroid(roots[0],X,roots[1])); draw(roots[2]--Y--roots[3]); label("$B$", centroid(roots[2],Y,roots[3])); draw(roots[4]--Z--roots[5]); label("$B$", centroid(roots[4],Z,roots[5])); label("$A$", (1+sqrt(3))*dir(90)); label("$A$", (1+sqrt(3))*dir(210)); label("$A$", (1+sqrt(3))*dir(330)); draw(shift(-10,0)*scale(2)*polygon(4)); draw((sqrt(2)-10,0)--(-10,sqrt(2))); label("$A$", (-10,0)); label("$B$", centroid((sqrt(2)-10,0),(-10,sqrt(2)),(sqrt(2)-10, sqrt(2))));[/asy]

2018 Stanford Mathematics Tournament, 7

Two equilateral triangles $ABC$ and $DEF$, each with side length $1$, are drawn in $2$ parallel planes such that when one plane is projected onto the other, the vertices of the triangles form a regular hexagon $AF BDCE$. Line segments $AE$, $AF$, $BF$, $BD$, $CD,$ and $CE$ are drawn, and suppose that each of these segments also has length $1$. Compute the volume of the resulting solid that is formed.