Found problems: 2265
2013 NZMOC Camp Selection Problems, 4
Let $C$ be a cube. By connecting the centres of the faces of $C$ with lines we form an octahedron $O$. By connecting the centers of each face of $O$ with lines we get a smaller cube $C'$. What is the ratio between the side length of $C$ and the side length of $C'$?
May Olympiad L1 - geometry, 2010.1
A closed container in the shape of a rectangular parallelepiped contains $1$ liter of water. If the container rests horizontally on three different sides, the water level is $2$ cm, $4$ cm and $5$ cm. Calculate the volume of the parallelepiped.
2021 Sharygin Geometry Olympiad, 10-11.4
Can a triangle be a development of a quadrangular pyramid?
2016 Sharygin Geometry Olympiad, 5
Does there exist a convex polyhedron having equal number of edges and diagonals?
[i](A diagonal of a polyhedron is a segment through two vertices not lying on the same face) [/i]
2008 District Olympiad, 3
Let $ABCDA' B' C' D '$ be a cube , $M$ the foot of the perpendicular from $A$ on the plane $(A'CD)$, $N$ the foot of the perpendicular from $B$ on the diagonal $A'C$ and $P$ is symmetric of the point $D$ with respect to $C$. Show that the points $M, N, P$ are collinear.
2004 Miklós Schweitzer, 7
Suppose that the closed subset $K$ of the sphere
$$S^2=\{ (x,y,z)\in \mathbb{R}^3\colon x^2+y^2+z^2=1 \}$$
is symmetric with respect to the origin and separates any two antipodal points in $S^2 \backslash K$. Prove that for any positive $\varepsilon$ there exists a homogeneous polynomial $P$ of odd degree such that the Hausdorff distance between
$$Z(P)=\{ (x,y,z)\in S^2 \colon P(x,y,z)=0\}$$
and $K$ is less than $\varepsilon$.
1993 French Mathematical Olympiad, Problem 5
(a) Let there be two given points $A,B$ in the plane.
i. Find the triangles $MAB$ with the given area and the minimal perimeter.
ii. Find the triangles $MAB$ with a given perimeter and the maximal area.
(b) In a tetrahedron of volume $V$, let $a,b,c,d$ be the lengths of its four edges, no three of which are coplanar, and let $L=a+b+c+d$. Determine the maximum value of $\frac V{L^3}$.
2005 Iran MO (2nd round), 3
In one galaxy, there exist more than one million stars. Let $M$ be the set of the distances between any $2$ of them. Prove that, in every moment, $M$ has at least $79$ members. (Suppose each star as a point.)
2007 iTest Tournament of Champions, 5
Let $c$ be the number of ways to choose three vertices of an $6$-dimensional cube that form an equilateral triangle. Find the remainder when $c$ is divided by $2007$.
1990 IMO Shortlist, 19
Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$
1991 Arnold's Trivium, 88
How many figures can be obtained by intersecting the infinite-dimensional cube $|x_k| \le 1$, $k = 1,2,\ldots$ with a two-dimensional plane?
1991 AMC 8, 15
All six sides of a rectangular solid were rectangles. A one-foot cube was cut out of the rectangular solid as shown. The total number of square feet in the surface of the new solid is how many more or less than that of the original solid?
[asy]
unitsize(20);
draw((0,0)--(1,0)--(1,3)--(0,3)--cycle);
draw((1,0)--(1+9*sqrt(3)/2,9/2)--(1+9*sqrt(3)/2,15/2)--(1+5*sqrt(3)/2,11/2)--(1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),4)--(1+2*sqrt(3),5)--(1,3));
draw((0,3)--(2*sqrt(3),5)--(1+2*sqrt(3),5));
draw((1+9*sqrt(3)/2,15/2)--(9*sqrt(3)/2,15/2)--(5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,5));
draw((1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),9/2)); draw((1+5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,11/2));
label("$1'$",(.5,0),S); label("$3'$",(1,1.5),E); label("$9'$",(1+9*sqrt(3)/4,9/4),S);
label("$1'$",(1+9*sqrt(3)/4,17/4),S); label("$1'$",(1+5*sqrt(3)/2,5),E);label("$1'$",(1/2+5*sqrt(3)/2,11/2),S);
[/asy]
$\text{(A)}\ 2\text{ less} \qquad \text{(B)}\ 1\text{ less} \qquad \text{(C)}\ \text{the same} \qquad \text{(D)}\ 1\text{ more} \qquad \text{(E)}\ 2\text{ more}$
2014 AIME Problems, 13
Ten adults enter a room, remove their shoes, and toss their shoes into a pile. Later, a child randomly pairs each left shoe with a right shoe without regard to which shoes belong together. The probability that for every positive integer $k<5,$ no collection of $k$ pairs made by the child contains the shoes from exactly $k$ of the adults is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2011 District Round (Round II), 4
Let $M$ be a set of six distinct positive integers whose sum is $60$. These numbers are written on the faces of a cube, one number to each face. A [i]move[/i] consists of choosing three faces of the cube that share a common vertex and adding $1$ to the numbers on those faces. Determine the number of sets $M$ for which it’s possible, after a finite number of moves, to produce a cube all of whose sides have the same number.
2013 Harvard-MIT Mathematics Tournament, 9
I have $8$ unit cubes of different colors, which I want to glue together into a $2\times 2\times 2$ cube. How many distinct $2\times 2\times 2$ cubes can I make? Rotations of the same cube are not considered distinct, but reflections are.
1993 Vietnam National Olympiad, 1
The tetrahedron $ABCD$ has its vertices on the fixed sphere $S$. Prove that $AB^{2}+AC^{2}+AD^{2}-BC^{2}-BD^{2}-CD^{2}$ is minimum iff $AB\perp AC,AC\perp AD,AD\perp AB$.
2016 CHMMC (Fall), 5
Suppose you have $27$ identical unit cubes colored such that $3$ faces adjacent to a vertex are red and the other $3$ are colored blue. Suppose further that you assemble these $27$ cubes randomly into a larger cube with $3$ cubes to an edge (in particular, the orientation of each cube is random). The probability that the entire cube is one solid color can be written as $\frac{1}{2^n}$ for some positive integer $n$. Find $n$.
2017 Yasinsky Geometry Olympiad, 2
Prove that if all the edges of the tetrahedron are equal triangles (such a tetrahedron is called equilateral), then its projection on the plane of a face is a triangle.
1992 All Soviet Union Mathematical Olympiad, 575
A plane intersects a sphere in a circle $C$. The points $A$ and $B$ lie on the sphere on opposite sides of the plane. The line joining $A$ to the center of the sphere is normal to the plane. Another plane $p$ intersects the segment $AB$ and meets $C$ at $P$ and $Q$. Show that $BP\cdot BQ$ is independent of the choice of $p$.
2000 Harvard-MIT Mathematics Tournament, 1
How many different ways are there to paint the sides of a tetrahedron with exactly $4$ colors? Each side gets its own color, and two colorings are the same if one can be rotated to get the other.
2014 Contests, 3
A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.
2022 JHMT HS, 9
Let $B$ and $D$ be two points chosen independently and uniformly at random from the unit sphere in 3D space centered at a point $A$ (this unit sphere is the set of all points in $\mathbb{R}^3$ a distance of $1$ away from $A$). Compute the expected value of $\sin^2\angle DAB$.
1998 AMC 12/AHSME, 27
A $ 9\times9\times9$ cube is composed of twenty-seven $ 3\times3\times3$ cubes. The big cube is 'tunneled' as follows: First, the six $ 3\times3\times3$ cubes which make up the center of each face as well as the center of $ 3\times3\times3$ cube are removed. Second, each of the twenty remaining $ 3\times3\times3$ cubes is diminished in the same way. That is, the central facial unit cubes as well as each center cube are removed.
[asy]
import three;
size(4.5cm);
triple eye = (6, 9, 5);
currentprojection = perspective(eye);
real eps = 0.001;
for(int i = 0; i < 3; ++i){
for(int j = 0; j < 3; ++j){
for(int k = 0; k < 3; ++k){
if(i == 1 && j == 1) continue;
if(j == 1 && k == 1) continue;
if(k == 1 && i == 1) continue;
draw(shift(i, j, k) * scale(1 - eps, 1 - eps, 1 - eps) * unitcube, gray(0.9), nolight);
draw(shift(i, j, k) * (X--(X + Y)--Y--(Y+Z)--Z--(Z + X)--cycle));
draw(shift(i, j, k) * (X + Y + Z--X + Y));
draw(shift(i, j, k) * (X + Y + Z--Y + Z));
draw(shift(i, j, k) * (X + Y + Z--Z + X));
}
}
}
[/asy]
The surface area of the final figure is
$ \textbf{(A)}\ 384\qquad
\textbf{(B)}\ 729\qquad
\textbf{(C)}\ 864\qquad
\textbf{(D)}\ 1024\qquad
\textbf{(E)}\ 1056$
1967 Polish MO Finals, 6
Given a sphere and a plane that has no common points with the sphere. Find the geometric locus of the centers of the circles of tangency with the sphere of those cones circumcribed on the sphere whose vertices lie on the given plane.
1951 Moscow Mathematical Olympiad, 197
Prove that the number $1\underbrace{\hbox{0...0}}_{\hbox{49}}5\underbrace{\hbox{0...0}}_{\hbox{99}}1$ is not the cube of any integer.