Found problems: 1065
2010 Princeton University Math Competition, 3
Triangle $ABC$ has $AB = 4$, $AC = 5$, and $BC = 6$. An angle bisector is drawn from angle $A$, and meets $BC$ at $M$. What is the nearest integer to $100 \frac{AM}{CM}$?
2014 Argentina Cono Sur TST, 5
In an acute triangle $ABC$, let $D$ be a point in $BC$ such that $AD$ is the angle bisector of $\angle{BAC}$. Let $E \neq B$ be the point of intersection of the circumcircle of triangle $ABD$ with the line perpendicular to $AD$ drawn through $B$. Let $O$ be the circumcenter of triangle $ABC$. Prove that $E$, $O$, and $A$ are collinear.
2013 India IMO Training Camp, 3
In a triangle $ABC$, with $AB \ne BC$, $E$ is a point on the line $AC$ such that $BE$ is perpendicular to $AC$. A circle passing through $A$ and touching the line $BE$ at a point $P \ne B$ intersects the line $AB$ for the second time at $X$. Let $Q$ be a point on the line $PB$ different from $P$ such that $BQ = BP$. Let $Y$ be the point of intersection of the lines $CP$ and $AQ$. Prove that the points $C, X, Y, A$ are concyclic if and only if $CX$ is perpendicular to $AB$.
2012 Federal Competition For Advanced Students, Part 1, 4
Let $ABC$ be a scalene (i.e. non-isosceles) triangle. Let $U$ be the center of the circumcircle of this triangle and $I$ the center of the incircle. Assume that the second point of intersection different from $C$ of the angle bisector of $\gamma = \angle ACB$ with the circumcircle of $ABC$ lies on the perpendicular bisector of $UI$.
Show that $\gamma$ is the second-largest angle in the triangle $ABC$.
2006 China Northern MO, 3
$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$.
[i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.
2002 All-Russian Olympiad Regional Round, 11.7
Given a convex quadrilateral $ABCD$.Let $\ell_A,\ell_B,\ell_C,\ell_D$ be exterior angle bisectors of quadrilateral $ABCD$.
Let $\ell_A \cap \ell_B=K,\ell_B \cap \ell_C=L,\ell_C \cap \ell_D=M,\ell_D \cap \ell_A=N$.Prove that if circumcircles of triangles $ABK$ and $CDM$ be externally tangent to each other then circumcircles of the triangles $BCL$ and $DAN$ are externally tangent to each other.(L.Emelyanov)
Brazil L2 Finals (OBM) - geometry, 2020.1
Let $ABC$ be an acute triangle and $AD$ a height. The angle bissector of $\angle DAC$ intersects $DC$ at $E$. Let $F$ be a point on $AE$ such that $BF$ is perpendicular to $AE$. If $\angle BAE=45º$, find $\angle BFC$.
2015 Canadian Mathematical Olympiad Qualification, 6
Let $\triangle ABC$ be a right-angled triangle with $\angle A = 90^{\circ}$, and $AB < AC$. Let points $D, E, F$ be located on side $BC$ such that $AD$ is the altitude, $AE$ is the internal angle bisector, and $AF$ is the median.
Prove that $3AD + AF > 4AE$.
2019 BAMO, E/3
In triangle $\vartriangle ABC$, we have marked points $A_1$ on side $BC, B_1$ on side $AC$, and $C_1$ on side $AB$ so that $AA_1$ is an altitude, $BB_1$ is a median, and $CC_1$ is an angle bisector. It is known that $\vartriangle A_1B_1C_1$ is equilateral. Prove that $\vartriangle ABC$ is equilateral too.
(Note: A median connects a vertex of a triangle with the midpoint of the opposite side. Thus, for median $BB_1$ we know that $B_1$ is the midpoint of side $AC$ in $\vartriangle ABC$.)
2012 May Olympiad, 3
Let $ABC$ be a triangle such that $\angle{ABC} = 2\angle{BCA}$ and $\angle{CAB}>90^\circ$. Let $M$ be the midpoint of $BC$. The line perpendicular to $AC$ that passes through $C$ cuts the line $AB$ at point $D$. Show that $\angle{AMB} = \angle{DMC}$.
2011 Sharygin Geometry Olympiad, 6
Prove that for any nonisosceles triangle $l_1^2>\sqrt3 S>l_2^2$, where $l_1, l_2$ are the greatest and the smallest bisectors of the triangle and $S$ is its area.
2010 Contests, 3
Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.
2013 Sharygin Geometry Olympiad, 5
The altitude $AA'$, the median $BB'$, and the angle bisector $CC'$ of a triangle $ABC$ are concurrent at point $K$. Given that $A'K = B'K$, prove that $C'K = A'K$.
2021 China Team Selection Test, 1
A cyclic quadrilateral $ABCD$ has circumcircle $\Gamma$, and $AB+BC=AD+DC$. Let $E$ be the midpoint of arc $BCD$, and $F (\neq C)$ be the antipode of $A$ [i]wrt[/i] $\Gamma$. Let $I,J,K$ be the incenter of $\triangle ABC$, the $A$-excenter of $\triangle ABC$, the incenter of $\triangle BCD$, respectively.
Suppose that a point $P$ satisfies $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$. Prove that $EK$ and $PF$ intersect on $\Gamma.$
1996 All-Russian Olympiad, 6
In isosceles triangle $ABC$ ($AB = BC$) one draws the angle bisector $CD$. The perpendicular to $CD$ through the center of the circumcircle of $ABC$ intersects $BC$ at $E$. The parallel to $CD$ through $E$ meets $AB$ at $F$. Show that $BE$ = $FD$.
[i]M. Sonkin[/i]
2012 Greece Team Selection Test, 2
Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$.
[hide=Diagram][asy]import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */
pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2);
draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
/* draw figures */
draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq);
draw((0.,0.)--(6.,0.), uququq);
draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq);
draw(circle((3.,0.7178452373968209), 3.0846882800136055));
draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345));
draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566));
draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951));
draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2"));
draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108));
draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088));
/* dots and labels */
dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle);
label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor);
dot((0.,0.),linewidth(3.pt) + dotstyle);
label("$B$", (-0.6,0.05), NE * labelscalefactor);
dot((6.,0.),linewidth(3.pt) + dotstyle);
label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor);
dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle);
label("$D$", (2.3,-0.7), NE * labelscalefactor);
dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle);
label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor);
dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle);
label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor);
dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle);
label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor);
dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle);
label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/hide]
1998 National Olympiad First Round, 25
In triangle $ ABC$ with $ \left|BC\right|>\left|BA\right|$, $ D$ is a point inside the triangle such that $ \angle ABD\equal{}\angle DBC$, $ \angle BDC\equal{}150{}^\circ$ and $ \angle DAC\equal{}60{}^\circ$. What is the measure of $ \angle BAD$?
$\textbf{(A)}\ 45 \qquad\textbf{(B)}\ 50 \qquad\textbf{(C)}\ 60 \qquad\textbf{(D)}\ 75 \qquad\textbf{(E)}\ 80$
2011 Belarus Team Selection Test, 2
The external angle bisector of the angle $A$ of an acute-angled triangle $ABC$ meets the circumcircle of $\vartriangle ABC$ at point $T$. The perpendicular from the orthocenter $H$ of $\vartriangle ABC$ to the line $TA$ meets the line $BC$ at point $P$. The line $TP$ meets the circumcircce of $\vartriangle ABC$ at point $D$. Prove that $AB^2+DC^2=AC^2+BD^2$
A. Voidelevich
2004 National Olympiad First Round, 33
Let $ABCD$ be a trapezoid such that $|AB|=9$, $|CD|=5$ and $BC\parallel AD$. Let the internal angle bisector of angle $D$ meet the internal angle bisectors of angles $A$ and $C$ at $M$ and $N$, respectively. Let the internal angle bisector of angle $B$ meet the internal angle bisectors of angles $A$ and $C$ at $L$ and $K$, respectively. If $K$ is on $[AD]$ and $\dfrac{|LM|}{|KN|} = \dfrac 37$, what is $\dfrac{|MN|}{|KL|}$?
$
\textbf{(A)}\ \dfrac{62}{63}
\qquad\textbf{(B)}\ \dfrac{27}{35}
\qquad\textbf{(C)}\ \dfrac{2}{3}
\qquad\textbf{(D)}\ \dfrac{5}{21}
\qquad\textbf{(E)}\ \dfrac{24}{63}
$
2011 All-Russian Olympiad Regional Round, 10.7
Points $C_0$ and $B_0$ are the respective midpoints of sides $AB$ and $AC$ of a non-isosceles acute triangle $ABC$, $O$ is its circumscenter and $H$ is the orthocenter. Lines $BH$ and $OC_0$ intersect at $P$, while lines $CH$ and $OB_0$ intersect at $Q$. $OPHQ$ is rhombus. Prove that points $A$, $P$ and $Q$ are collinear. (Author: L. Emelyanov)
2018 Yasinsky Geometry Olympiad, 3
Construct triangle $ABC$, given the altitude and the angle bisector both from $A$, if it is known for the sides of the triangle $ABC$ that $2BC = AB + AC$.
(Alexey Karlyuchenko)
2005 USAMTS Problems, 5
Given triangle $ABC$, let $M$ be the midpoint of side $AB$ and $N$ be the midpoint of side $AC$. A circle is inscribed inside quadrilateral $NMBC$, tangent to all four sides, and that circle touches $MN$ at point $X.$ The circle inscribed in triangle $AMN$ touches $MN$ at point $Y$, with $Y$ between $X$ and $N$. If $XY=1$ and $BC=12$, find, with proof, the lengths of the sides $AB$ and $AC$.
2005 Sharygin Geometry Olympiad, 9.5
It is given that for no side of the triangle from the height drawn to it, the bisector and the median it is impossible to make a triangle. Prove that one of the angles of the triangle is greater than $135^o$
2011 Dutch BxMO TST, 2
In an acute triangle $ABC$ the angle $\angle C$ is greater than $\angle A$. Let $E$ be such that $AE$ is a diameter of the circumscribed circle $\Gamma$ of \vartriangle ABC. Let $K$ be the intersection of $AC$ and the tangent line at $B$ to $\Gamma$. Let $L$ be the orthogonal projection of $K$ on $AE$ and let $D$ be the intersection of $KL$ and $AB$. Prove that $CE$ is the bisector of $\angle BCD$.
1996 USAMO, 3
Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.