This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

Oliforum Contest II 2009, 2

Let a convex quadrilateral $ ABCD$ fixed such that $ AB \equal{} BC$, $ \angle ABC \equal{} 80, \angle CDA \equal{} 50$. Define $ E$ the midpoint of $ AC$; show that $ \angle CDE \equal{} \angle BDA$ [i](Paolo Leonetti)[/i]

2001 All-Russian Olympiad Regional Round, 9.3

In parallelogram $ABCD$, points $M$ and $N$ are selected on sides $AB$ and $BC$ respectively so that $AM = NC$, $Q$ is the intersection point of segments $AN$ and $CM$. Prove that $DQ$ is the bisector of angle $D$.

2018 Moscow Mathematical Olympiad, 5

We have a blue triangle. In every move, we divide the blue triangle by angle bisector to $2$ triangles and color one triangle in red. Prove, that after some moves we color more than half of the original triangle in red.

2020 Novosibirsk Oral Olympiad in Geometry, 7

You are given a quadrilateral $ABCD$. It is known that $\angle BAC = 30^o$, $\angle D = 150^o$ and, in addition, $AB = BD$. Prove that $AC$ is the bisector of angle $C$.

2019 Tournament Of Towns, 4

Let $OP$ and $OQ$ be the perpendiculars from the circumcenter $O$ of a triangle $ABC$ to the internal and external bisectors of the angle $B$. Prove that the line$ PQ$ divides the segment connecting midpoints of $CB$ and $AB$ into two equal parts. (Artemiy Sokolov)

2018 Pan-African Shortlist, G1

In a triangle $ABC$, let $D$ and $E$ be the midpoints of $AB$ and $AC$, respectively, and let $F$ be the foot of the altitude through $A$. Show that the line $DE$, the angle bisector of $\angle ACB$ and the circumcircle of $ACF$ pass through a common point. [b]Alternate version:[/b] In a triangle $ABC$, let $D$ and $E$ be the midpoints of $AB$ and $AC$, respectively. The line $DE$ and the angle bisector of $\angle ACB$ meet at $G$. Show that $\angle AGC$ is a right angle.

2007 Hanoi Open Mathematics Competitions, 6

In triangle $ABC, \angle BAC = 60^o, \angle ACB = 90^o$ and $D$ is on $BC$. If $AD$ bisects $\angle BAC$ and $CD = 3$ cm, calculate $DB$ .

2004 Germany Team Selection Test, 1

The $A$-excircle of a triangle $ABC$ touches the side $BC$ at the point $K$ and the extended side $AB$ at the point $L$. The $B$-excircle touches the lines $BA$ and $BC$ at the points $M$ and $N$, respectively. The lines $KL$ and $MN$ meet at the point $X$. Show that the line $CX$ bisects the angle $ACN$.

2010 Vietnam National Olympiad, 3

In plane,let a circle $(O)$ and two fixed points $B,C$ lies in $(O)$ such that $BC$ not is the diameter.Consider a point $A$ varies in $(O)$ such that $A\neq B,C$ and $AB\neq AC$.Call $D$ and $E$ respective is intersect of $BC$ and internal and external bisector of $\widehat{BAC}$,$I$ is midpoint of $DE$.The line that pass through orthocenter of $\triangle ABC$ and perpendicular with $AI$ intersects $AD,AE$ respective at $M,N$. 1/Prove that $MN$ pass through a fixed point 2/Determint the place of $A$ such that $S_{AMN}$ has maxium value

2022 Novosibirsk Oral Olympiad in Geometry, 3

Three angle bisectors were drawn in a triangle, and it turned out that the angles between them are $50^o$, $60^o$ and $70^o$. Find the angles of the original triangle.

2015 Ukraine Team Selection Test, 1

Let $O$ be the circumcenter of the triangle $ABC, A'$ be a point symmetric of $A$ wrt line $BC, X$ is an arbitrary point on the ray $AA'$ ($X \ne A$). Angle bisector of angle $BAC$ intersects the circumcircle of triangle $ABC$ at point $D$ ($D \ne A$). Let $M$ be the midpoint of the segment $DX$. A line passing through point $O$ parallel to $AD$, intersects $DX$ at point $N$. Prove that angles $BAM$ and $CAN$ angles are equal.

2003 Junior Balkan MO, 3

Let $D$, $E$, $F$ be the midpoints of the arcs $BC$, $CA$, $AB$ on the circumcircle of a triangle $ABC$ not containing the points $A$, $B$, $C$, respectively. Let the line $DE$ meets $BC$ and $CA$ at $G$ and $H$, and let $M$ be the midpoint of the segment $GH$. Let the line $FD$ meet $BC$ and $AB$ at $K$ and $J$, and let $N$ be the midpoint of the segment $KJ$. a) Find the angles of triangle $DMN$; b) Prove that if $P$ is the point of intersection of the lines $AD$ and $EF$, then the circumcenter of triangle $DMN$ lies on the circumcircle of triangle $PMN$.

2003 IMAR Test, 2

Prove that in a triangle the following inequality holds: $$s\sqrt3 \ge \ell_a + \ell_b + \ell_c$$ where $\ell_a$ is the length of the angle bisector from angle $A$, and $s$ is the semiperimeter of the triangle

2014 Dutch IMO TST, 4

Let $\triangle ABC$ be a triangle with $|AC|=2|AB|$ and let $O$ be its circumcenter. Let $D$ be the intersection of the bisector of $\angle A$ with $BC$. Let $E$ be the orthogonal projection of $O$ to $AD$ and let $F\ne D$ be the point on $AD$ satisfying $|CD|=|CF|$. Prove that $\angle EBF=\angle ECF$.

2022 Israel TST, 3

In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.

2013 Oral Moscow Geometry Olympiad, 1

In triangle $ABC$ the angle bisector $AK$ is perpendicular on the median is $CL$. Prove that in the triangle $BKL$ also one of angle bisectors are perpendicular to one of the medians.

1969 Canada National Olympiad, 5

Let $ABC$ be a triangle with sides of length $a$, $b$ and $c$. Let the bisector of the angle $C$ cut $AB$ in $D$. Prove that the length of $CD$ is \[ \frac{2ab\cos \frac{C}{2}}{a+b}. \]

2000 Italy TST, 2

Let $ ABC$ be an isosceles right triangle and $M$ be the midpoint of its hypotenuse $AB$. Points $D$ and $E$ are taken on the legs $AC$ and $BC$ respectively such that $AD=2DC$ and $BE=2EC$. Lines $AE$ and $DM$ intersect at $F$. Show that $FC$ bisects the $\angle DFE$.

2014 Contests, 2

The points $P$ and $Q$ lie on the sides $BC$ and $CD$ of the parallelogram $ABCD$ so that $BP = QD$. Show that the intersection point between the lines $BQ$ and $DP$ lies on the line bisecting $\angle BAD$.

2015 Dutch BxMO/EGMO TST, 4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

2011 Dutch BxMO TST, 5

A trapezoid $ABCD$ is given with $BC // AD$. Assume that the bisectors of the angles $BAD$ and $CDA$ intersect on the perpendicular bisector of the line segment $BC$. Prove that $|AB|= |CD|$ or $|AB| +|CD| =|AD|$.

2011 Portugal MO, 5

Let $[ABC]$ be a triangle, $D$ be the orthogonal projection of $B$ on the bisector of $\angle ACB$ and $E$ the orthogonal projection of $C$ on the bisector of $\angle ABC$ . Prove that $DE$ intersects the sides $[AB]$ and $[AC]$ at the touchpoints of the circle inscribed in the triangle $[ABC]$.

2010 JBMO Shortlist, 4

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.

2009 Belarus Team Selection Test, 3

Points $T,P,H$ lie on the side $BC,AC,AB$ respectively of triangle $ABC$, so that $BP$ and $AT$ are angle bisectors and $CH$ is an altitude of $ABC$. Given that the midpoint of $CH$ belongs to the segment $PT,$ find the value of $\cos A + \cos B$ I. Voronovich

Kyiv City MO Juniors Round2 2010+ geometry, 2016.9.2

The bisector of the angle $BAC$of the acute triangle $ABC$ ( $AC \ne AB$) intersects its circumscribed circle for the second time at the point $W$. Let $O$ be the center of the circumscribed circle $\Delta ABC$. The line $AW$ intersects for the second time the circumcribed circles of triangles $OWB$ and $OWC$ at the points $N$ and $M$, respectively. Prove that $BN + MC = AW$. (Mitrofanov V., Hilko D.)