This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

2009 Indonesia MO, 4

Given an acute triangle $ ABC$. The incircle of triangle $ ABC$ touches $ BC,CA,AB$ respectively at $ D,E,F$. The angle bisector of $ \angle A$ cuts $ DE$ and $ DF$ respectively at $ K$ and $ L$. Suppose $ AA_1$ is one of the altitudes of triangle $ ABC$, and $ M$ be the midpoint of $ BC$. (a) Prove that $ BK$ and $ CL$ are perpendicular with the angle bisector of $ \angle BAC$. (b) Show that $ A_1KML$ is a cyclic quadrilateral.

1986 IMO Longlists, 2

Let $ABCD$ be a convex quadrilateral. $DA$ and $CB$ meet at $F$ and $AB$ and $DC$ meet at $E$. The bisectors of the angles $DFC$ and $AED$ are perpendicular. Prove that these angle bisectors are parallel to the bisectors of the angles between the lines $AC$ and $BD.$

1994 Poland - Second Round, 5

The incircle $\omega$ of a triangle $ABC$ is tangent to the sides $AB$ and $BC$ at $P$ and $Q$ respectively. The angle bisector at $A$ meets $PQ$ at point $S$. Prove $\angle ASC = 90^o$ .

2014 Postal Coaching, 2

Let $O$ be the centre of the square $ABCD$. Let $P,Q,R$ be respectively on the segments $OA,OB,OC$ such that $OP=3,OQ=5,OR=4$. Suppose $S$ is on $OD$ such that $X=AB\cap PQ,Y=BC\cap QR$ and $Z=CD\cap RS$ are collinear. Find $OS$.

2011 Dutch IMO TST, 5

Let $ABC$ be a triangle with $|AB|> |BC|$. Let $D$ be the midpoint of $AC$. Let $E$ be the intersection of the angular bisector of $\angle ABC$ and the line $AC$. Let $F$ be the point on $BE$ such that $CF$ is perpendicular to $BE$. Finally, let $G$ be the intersection of $CF$ and $BD$. Prove that $DF$ divides the line segment $EG$ into two equal parts.

2001 IberoAmerican, 2

The incircle of the triangle $\triangle{ABC}$ has center at $O$ and it is tangent to the sides $BC$, $AC$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. The lines $BO$ and $CO$ intersect the line $YZ$ at the points $P$ and $Q$, respectively. Show that if the segments $XP$ and $XQ$ has the same length, then the triangle $\triangle ABC$ is isosceles.

2000 Singapore Team Selection Test, 1

In a triangle $ABC$, $AB > AC$, the external bisector of angle $A$ meets the circumcircle of triangle $ABC$ at $E$, and $F$ is the foot of the perpendicular from $E$ onto $AB$. Prove that $2AF = AB - AC$

2012 Iran Team Selection Test, 2

Consider $\omega$ is circumcircle of an acute triangle $ABC$. $D$ is midpoint of arc $BAC$ and $I$ is incenter of triangle $ABC$. Let $DI$ intersect $BC$ in $E$ and $\omega$ for second time in $F$. Let $P$ be a point on line $AF$ such that $PE$ is parallel to $AI$. Prove that $PE$ is bisector of angle $BPC$. [i]Proposed by Mr.Etesami[/i]

2021 Polish Junior MO Finals, 4

On side $AB$ of a scalene triangle $ABC$ there are points $M$, $N$ such that $AN=AC$ and $BM=BC$. The line parallel to $BC$ through $M$ and the line parallel to $AC$ through $N$ intersect at $S$. Prove that $\measuredangle{CSM} = \measuredangle{CSN}$.

2006 Romania National Olympiad, 1

Let $ABC$ be a triangle and the points $M$ and $N$ on the sides $AB$ respectively $BC$, such that $2 \cdot \frac{CN}{BC} = \frac{AM}{AB}$. Let $P$ be a point on the line $AC$. Prove that the lines $MN$ and $NP$ are perpendicular if and only if $PN$ is the interior angle bisector of $\angle MPC$.

1999 Tournament Of Towns, 5

The sides $AB$ and $AC$ are tangent at points $P$ and $Q$, respectively, to the incircle of a triangle $ABC. R$ and $S$ are the midpoints of the sides $AC$ and $BC$, respectively, and $T$ is the intersection point of the lines $PQ$ and $RS$. Prove that $T$ lies on the bisector of the angle $B$ of the triangle. (M Evdokimov)

Ukraine Correspondence MO - geometry, 2014.7

Let $ABC$ be an isosceles triangle ($AB = AC$). The points $D$ and $E$ were marked on the ray $AC$ so that $AC = 2AD$ and $AE = 2AC$. Prove that $BC$ is the bisector of the angle $\angle DBE$.

2013 Oral Moscow Geometry Olympiad, 2

Inside the angle $AOD$, the rays $OB$ and $OC$ are drawn such that $\angle AOB = \angle COD.$ Two circles are inscribed inside the angles $\angle AOB$ and $\angle COD$ . Prove that the intersection point of the common internal tangents of these circles lies on the bisector of the angle $AOD$.

2014 Contests, 1

In a triangle $ABC$, the external bisector of $\angle BAC$ intersects the ray $BC$ at $D$. The feet of the perpendiculars from $B$ and $C$ to line $AD$ are $E$ and $F$, respectively and the foot of the perpendicular from $D$ to $AC$ is $G$. Show that $\angle DGE + \angle DGF = 180^{\circ}$.

2018 Oral Moscow Geometry Olympiad, 2

Bisectors of angle $C$ and externalangle $A$ of trapezoid $ABCD$ with bases $BC$ and $AD$ intersect at point $M$, and the bisector of angle $B$ and external angle $D$ intersect at point $N$. Prove that the midpoint of the segment $MN$ is equidistant from the lines $AB$ and $CD$.

2017-IMOC, G1

Given $\vartriangle ABC$. Choose two points $P, Q$ on $AB, AC$ such that $BP = CQ$. Let $M, T$ be the midpoints of $BC, PQ$. Show that $MT$ is parallel to the angle bisevtor of $\angle BAC$ [img]http://4.bp.blogspot.com/-MgMtdnPtq1c/XnSHHFl1LDI/AAAAAAAALdY/8g8541DnyGo_Gqd19-7bMBpVRFhbXeYPACK4BGAYYCw/s1600/imoc2017%2Bg1.png[/img]

IV Soros Olympiad 1997 - 98 (Russia), 9.10

On the plane there is an image of a circle with a marked center. Let an arbitrary angle be drawn on this plane. Using one ruler, construct the bisector of this angle.

2023 Chile National Olympiad, 6

Let $\vartriangle ABC$ be a triangle such that $\angle ABC = 30^o$, $\angle ACB = 15^o$. Let $M$ be midpoint of segment $BC$ and point $N$ lies on segment $MC$, such that the length of $NC$ is equal to length of $AB$. Proce that $AN$ is the bisector of the angle $\angle MAC$. [img]https://cdn.artofproblemsolving.com/attachments/2/7/4c554b53f03288ee69931fdd2c6fbd3e27ab13.png[/img]

2010 Sharygin Geometry Olympiad, 5

Let $AH$, $BL$ and $CM$ be an altitude, a bisectrix and a median in triangle $ABC$. It is known that lines $AH$ and $BL$ are an altitude and a bisectrix of triangle $HLM$. Prove that line $CM$ is a median of this triangle.

2000 Belarus Team Selection Test, 7.2

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2002 All-Russian Olympiad Regional Round, 10.3

The perpendicular bisector to side $AC$ of triangle $ABC$ intersects side $BC$ at point $M$ (see fig.). The bisector of angle $\angle AMB$ intersects the circumcircle of triangle $ABC$ at point $K$. Prove that the line passing through the centers of the inscribed circles triangles $AKM$ and $BKM$, perpendicular to the bisector of angle $\angle AKB$. [img]https://cdn.artofproblemsolving.com/attachments/b/4/b53ec7df0643a90b835f142d99c417a2a1dd45.png[/img]

2014 PUMaC Team, 11

$\triangle ABC$ has $AB=4$ and $AC=6$. Let point $D$ be on line $AB$ so that $A$ is between $B$ and $D$. Let the angle bisector of $\angle BAC$ intersect line $BC$ at $E$, and let the angle bisector of $\angle DAC$ intersect line $BC$ at $F$. Given that $AE=AF$, find the square of the circumcircle's radius' length.

2003 All-Russian Olympiad, 2

Two circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$ respectively intersect at $A$ and $B$. The tangents at $A$ to $S_1$ and $S_2$ meet segments $BO_2$ and $BO_1$ at $K$ and $L$ respectively. Show that $KL \parallel O_1O_2.$

2012 Iran MO (2nd Round), 3

The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$. [i]Proposed by Mehdi E'tesami Fard[/i]

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.