Found problems: 1065
1967 Poland - Second Round, 3
Two circles touch internally at point $A$. A chord $ BC $ of the larger circle is drawn tangent to the smaller one at point $ D $. Prove that $ AD $ is the bisector of angle $ BAC $.
Novosibirsk Oral Geo Oly VIII, 2020.7
You are given a quadrilateral $ABCD$. It is known that $\angle BAC = 30^o$, $\angle D = 150^o$ and, in addition, $AB = BD$. Prove that $AC$ is the bisector of angle $C$.
2014 National Olympiad First Round, 29
Let $ABC$ be a triangle such that $|AB|=13 , |BC|=12$ and $|CA|=5$. Let the angle bisectors of $A$ and $B$ intersect at $I$ and meet the opposing sides at $D$ and $E$, respectively. The line passing through $I$ and the midpoint of $[DE]$ meets $[AB]$ at $F$. What is $|AF|$?
$
\textbf{(A)}\ \dfrac{3}{2}
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ \dfrac{5}{2}
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ \dfrac{7}{2}
$
2013 ELMO Problems, 4
Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.
[i]Proposed by Evan Chen[/i]
2008 IberoAmerican, 2
Given a triangle $ ABC$, let $ r$ be the external bisector of $ \angle ABC$. $ P$ and $ Q$ are the feet of the perpendiculars from $ A$ and $ C$ to $ r$. If $ CP \cap BA \equal{} M$ and $ AQ \cap BC\equal{}N$, show that $ MN$, $ r$ and $ AC$ concur.
2002 All-Russian Olympiad, 2
Point $A$ lies on one ray and points $B,C$ lie on the other ray of an angle with the vertex at $O$ such that $B$ lies between $O$ and $C$. Let $O_1$ be the incenter of $\triangle OAB$ and $O_2$ be the center of the excircle of $\triangle OAC$ touching side $AC$. Prove that if $O_1A = O_2A$, then the triangle $ABC$ is isosceles.
2008 Postal Coaching, 3
Let $ABC$ be a triangle. For any point $X$ on $BC$, let $AX$ meet the circumcircle of $ABC$ in $X'$. Prove or disprove: $XX'$ has maximum length if and only if $AX$ lies between the median and the internal angle bisector from $A$.
1979 USAMO, 2
Let $S$ be a great circle with pole $P$. On any great circle through $P$, two points $A$ and $B$ are chosen equidistant from $P$. For any [i] spherical triangle [/i] $ABC$ (the sides are great circles ares), where $C$ is on $S$, prove that the great circle are $CP$ is the angle bisector of angle $C$.
[b] Note. [/b] A great circle on a sphere is one whose center is the center of the sphere. A pole of the great circle $S$ is a point $P$ on the sphere such that the diameter through $P$ is perpendicular to the plane of $S$.
2013 Sharygin Geometry Olympiad, 16
The incircle of triangle $ABC$ touches $BC$, $CA$, $AB$ at points $A_1$, $B_1$, $C_1$, respectively. The perpendicular from the incenter $I$ to the median from vertex $C$ meets the line $A_1B_1$ in point $K$. Prove that $CK$ is parallel to $AB$.
2006 Iran Team Selection Test, 5
Let $ABC$ be a triangle such that it's circumcircle radius is equal to the radius of outer inscribed circle with respect to $A$.
Suppose that the outer inscribed circle with respect to $A$ touches $BC,AC,AB$ at $M,N,L$.
Prove that $O$ (Center of circumcircle) is the orthocenter of $MNL$.
Novosibirsk Oral Geo Oly VIII, 2020.6
Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.
1998 Italy TST, 2
In a triangle $ABC$, points $H,M,L$ are the feet of the altitude from $C$, the median from $A$, and the angle bisector from $B$, respectively. Show that if triangle $HML$ is equilateral, then so is triangle $ABC$.
2004 Germany Team Selection Test, 2
In a triangle $ABC$, let $D$ be the midpoint of the side $BC$, and let $E$ be a point on the side $AC$. The lines $BE$ and $AD$ meet at a point $F$.
Prove: If $\frac{BF}{FE}=\frac{BC}{AB}+1$, then the line $BE$ bisects the angle $ABC$.
2020 Kosovo Team Selection Test, 3
Let $ABCD$ be a cyclic quadrilateral with center $O$ such that $BD$ bisects $AC.$ Suppose that the angle bisector of $\angle ABC$ intersects the angle bisector of $\angle ADC$ at a single point $X$ different than $B$ and $D.$ Prove that the line passing through the circumcenters of triangles $XAC$ and $XBD$ bisects the segment $OX.$
[i]Proposed by Viktor Ahmeti and Leart Ajvazaj, Kosovo[/i]
2018 India Regional Mathematical Olympiad, 1
Let $ABC$ be an acute angled triangle and let $D$ be an interior point of the segment $BC$. Let the circumcircle of $ACD$ intersect $AB$ at $E$ ($E$ between $A$ and $B$) and let circumcircle of $ABD$ intersect $AC$ at $F$ ($F$ between $A$ and $C$). Let $O$ be the circumcenter of $AEF$. Prove that $OD$ bisects $\angle EDF$.
1999 Mexico National Olympiad, 5
In a quadrilateral $ABCD$ with $AB // CD$, the external bisectors of the angles at $B$ and $C$ meet at $P$, while the external bisectors of the angles at $A$ and $D$ meet at $Q$. Prove that the length of $PQ$ equals the semiperimeter of $ABCD$.
2012 ITAMO, 1
On the sides of a triangle $ABC$ right angled at $A$ three points $D, E$ and $F$ (respectively $BC, AC$
and $AB$) are chosen so that the quadrilateral $AFDE$ is a square. If $x$ is the length of the side of the square, show that
\[\frac{1}{x}=\frac{1}{AB}+\frac{1}{AC}\]
1995 AIME Problems, 9
Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Then the perimeter of $\triangle ABC$ may be written in the form $a+\sqrt{b},$ where $a$ and $b$ are integers. Find $a+b.$
[asy] import graph; size(7cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3; draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("$11$",(0.75,1.63),SE*lsf); dot((1,3),ds); label("$A$",(0.96,3.14),NE*lsf); dot((0,0),ds); label("$B$",(-0.15,-0.18),NE*lsf); dot((2,0),ds); label("$C$",(2.06,-0.18),NE*lsf); dot((1,0),ds); label("$M$",(0.97,-0.27),NE*lsf); dot((1,0.7),ds); label("$D$",(1.05,0.77),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
2017 Yasinsky Geometry Olympiad, 6
In the triangle $ABC$ , the angle bisector $AD$ divides the side $BC$ into the ratio $BD: DC = 2: 1$. In what ratio, does the median $CE$ divide this bisector?
2020 Yasinsky Geometry Olympiad, 6
Let $ABCD$ be a square, point $E$ be the midpoint of the side $BC$. The point $F$ belongs to the side $AB$, and $DE \perp EF$. The point $G$ lies inside the square, and $GF = FE$ and $GF \perp FE$. Prove that:
a) $DE$ is the bisector of the $\angle FDC$
b) $FG$ is the bisector of the $\angle AFD$
c) the point $G$ is the center of the circle inscribed in the triangle $ADF$.
(Ercole Suppa, Italy)
2022 Bundeswettbewerb Mathematik, 3
A circle $k$ touches a larger circle $K$ from inside in a point $P$. Let $Q$ be point on $k$ different from $P$. The line tangent to $k$ at $Q$ intersects $K$ in $A$ and $B$.
Show that the line $PQ$ bisects $\angle APB$.
2001 Rioplatense Mathematical Olympiad, Level 3, 5
Let $ABC$ be a acute-angled triangle with centroid $G$, the angle bisector of $\angle ABC$ intersects $AC$ in $D$. Let $P$ and $Q$ be points in $BD$ where $\angle PBA = \angle PAB$ and $\angle QBC = \angle QCB$. Let $M$ be the midpoint of $QP$, let $N$ be a point in the line $GM$ such that $GN = 2GM$(where $G$ is the segment $MN$), prove that:
$\angle ANC + \angle ABC = 180$
2005 Polish MO Finals, 2
The points $A, B, C, D$ lie in this order on a circle $o$. The point $S$ lies inside $o$ and has properties $\angle SAD=\angle SCB$ and $\angle SDA= \angle SBC$. Line which in which angle bisector of $\angle ASB$ in included cut the circle in points $P$ and $Q$. Prove $PS =QS$.
2008 Vietnam Team Selection Test, 1
On the plane, given an angle $ xOy$. $ M$ be a mobile point on ray $ Ox$ and $ N$ a mobile point on ray $ Oy$. Let $ d$ be the external angle bisector of angle $ xOy$ and $ I$ be the intersection of $ d$ with the perpendicular bisector of $ MN$. Let $ P$, $ Q$ be two points lie on $ d$ such that $ IP \equal{} IQ \equal{} IM \equal{} IN$, and let $ K$ the intersection of $ MQ$ and $ NP$.
$ 1.$ Prove that $ K$ always lie on a fixed line.
$ 2.$ Let $ d_1$ line perpendicular to $ IM$ at $ M$ and $ d_2$ line perpendicular to $ IN$ at $ N$. Assume that there exist the intersections $ E$, $ F$ of $ d_1$, $ d_2$ from $ d$. Prove that $ EN$, $ FM$ and $ OK$ are concurrent.
2016 Azerbaijan Junior Mathematical Olympiad, 7
In $\triangle ABC$ the median $AM$ is drawn. The foot of perpendicular from $B$ to the angle bisector of $\angle BMA$ is $B_1$ and the foot of perpendicular from $C$ to the angle bisector of $\angle AMC$ is $C_1.$ Let $MA$ and $B_1C_1$ intersect at $A_1.$ Find $\frac{B_1A_1}{A_1C_1}.$