This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

2023 Romanian Master of Mathematics Shortlist, G1

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. The incircle of the triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$, respectively. The circumcircle of triangle $ADI$ crosses $\omega$ again at $P$, and the lines $PE$ and $PF$ cross $\omega$ again at $X$and $Y$, respectively. Prove that the lines $AI$, $BX$ and $CY$ are concurrent.

2022 EGMO, 1

Let $ABC$ be an acute-angled triangle in which $BC<AB$ and $BC<CA$. Let point $P$ lie on segment $AB$ and point $Q$ lie on segment $AC$ such that $P \neq B$, $Q \neq C$ and $BQ = BC = CP$. Let $T$ be the circumcenter of triangle $APQ$, $H$ the orthocenter of triangle $ABC$, and $S$ the point of intersection of the lines $BQ$ and $CP$. Prove that $T$, $H$, and $S$ are collinear.

2021 Science ON all problems, 4

$ABCD$ is a cyclic convex quadrilateral whose diagonals meet at $X$. The circle $(AXD)$ cuts $CD$ again at $V$ and the circle $(BXC)$ cuts $AB$ again at $U$, such that $D$ lies strictly between $C$ and $V$ and $B$ lies strictly between $A$ and $U$. Let $P\in AB\cap CD$.\\ \\ If $M$ is the intersection point of the tangents to $U$ and $V$ at $(UPV)$ and $T$ is the second intersection of circles $(UPV)$ and $(PAC)$, prove that $\angle PTM=90^o$.\\ \\ [i](Vlad Robu)[/i]

2021 Peru Iberoamerican Team Selection Test, P4

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2022 Bolivia Cono Sur TST, P6

On $\triangle ABC$ let points $D,E$ on sides $AB,BC$ respectivily such that $AD=DE=EC$ and $AE \ne DC$. Let $P$ the intersection of lines $AE, DC$, show that $\angle ABC=60$ if $AP=CP$.

2021 Science ON Seniors, 4

$ABCD$ is a cyclic convex quadrilateral whose diagonals meet at $X$. The circle $(AXD)$ cuts $CD$ again at $V$ and the circle $(BXC)$ cuts $AB$ again at $U$, such that $D$ lies strictly between $C$ and $V$ and $B$ lies strictly between $A$ and $U$. Let $P\in AB\cap CD$.\\ \\ If $M$ is the intersection point of the tangents to $U$ and $V$ at $(UPV)$ and $T$ is the second intersection of circles $(UPV)$ and $(PAC)$, prove that $\angle PTM=90^o$.\\ \\ [i](Vlad Robu)[/i]

1999 BAMO, 5

Let $ABCD$ be a cyclic quadrilateral (a quadrilateral which can be inscribed in a circle). Let $E$ and $F$ be variable points on the sides $AB$ and $CD$, respectively, such that $\frac{AE}{EB} = \frac{C}{FD}$. Let $P$ be the point on the segment $EF$ such that $\frac{PE}{PF} = \frac{AB}{CD}$. Prove that the ratio between the areas of triangle $APD$ and $BPC$ does not depend on the choice of $E$ and $F$.

2022 Iran MO (3rd Round), 1

Triangle $ABC$ is assumed. The point $T$ is the second intersection of the symmedian of vertex $A$ with the circumcircle of the triangle $ABC$ and the point $D \neq A$ lies on the line $AC$ such that $BA=BD$. The line that at $D$ tangents to the circumcircle of the triangle $ADT$, intersects the circumcircle of the triangle $DCT$ for the second time at $K$. Prove that $\angle BKC = 90^{\circ}$(The symmedian of the vertex $A$, is the reflection of the median of the vertex $A$ through the angle bisector of this vertex).

2016 Irish Math Olympiad, 2

In triangle $ABC$ we have $|AB| \ne |AC|$. The bisectors of $\angle ABC$ and $\angle ACB$ meet $AC$ and $AB$ at $E$ and $F$, respectively, and intersect at I. If $|EI| = |FI|$ find the measure of $\angle BAC$.

2017 Philippine MO, 4

Circles \(\mathcal{C}_1\) and \(\mathcal{C}_2\) with centers at \(C_1\) and \(C_2\) respectively, intersect at two points \(A\) and \(B\). Points \(P\) and \(Q\) are varying points on \(\mathcal{C}_1\) and \(\mathcal{C}_2\), respectively, such that \(P\), \(Q\) and \(B\) are collinear and \(B\) is always between \(P\) and \(Q\). Let lines \(PC_1\) and \(QC_2\) intersect at \(R\), let \(I\) be the incenter of \(\Delta PQR\), and let \(S\) be the circumcenter of \(\Delta PIQ\). Show that as \(P\) and \(Q\) vary, \(S\) traces the arc of a circle whose center is concyclic with \(A\), \(C_1\) and \(C_2\).

2018 Peru Iberoamerican Team Selection Test, P2

Let $ABC$ be a triangle with $AB = AC$ and let $D$ be the foot of the height drawn from $A$ to $BC$. Let $P$ be a point inside the triangle $ADC$ such that $\angle APB> 90^o$ and $\angle PAD + \angle PBD = \angle PCD$. The $CP$ and $AD$ lines are cut at $Q$ and the $BP$ and $AD$ lines cut into $R$. Let $T$ be a point in segment $AB$ such that $\angle TRB = \angle DQC$ and let S be a point in the extension of the segment $AP$ (on the $P$ side) such that $\angle PSR = 2 \angle PAR$. Prove that $RS = RT$.

2013 Hanoi Open Mathematics Competitions, 7

Let $ABC$ be an equilateral triangle and a point M inside the triangle such that $MA^2 = MB^2 +MC^2$. Draw an equilateral triangle $ACD$ where $D \ne B$. Let the point $N$ inside $\vartriangle ACD$ such that $AMN$ is an equilateral triangle. Determine $\angle BMC$.

2023 Belarusian National Olympiad, 10.1

A circle $\omega$ with center $I$ is located inside the circle $\Omega$ with center $O$. Ray $IO$ intersects $\omega$ and $\Omega$ at $P_1$ and $P_2$ respectively. On $\Omega$ an arbitrary point $A \neq P_2$ is chosen. The circumcircle of the triangle $P_1P_2A$ intersects $\omega$ for the second time at $X$. Line $AX$ intersects $\Omega$ for the second time at $Y$. Prove that lines $XP_1$ and $YP_2$ are perpendicular to each other

2018 Thailand TST, 2

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2013 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle with $\angle A=90^{\circ}$ and $AB=AC$. Let $D$ and $E$ be points on the segment $BC$ such that $BD:DE:EC = 1:2:\sqrt{3}$. Prove that $\angle DAE= 45^{\circ}$

1986 China Team Selection Test, 1

If $ABCD$ is a cyclic quadrilateral, then prove that the incenters of the triangles $ABC$, $BCD$, $CDA$, $DAB$ are the vertices of a rectangle.

2010 Middle European Mathematical Olympiad, 3

We are given a cyclic quadrilateral $ABCD$ with a point $E$ on the diagonal $AC$ such that $AD=AE$ and $CB=CE$. Let $M$ be the center of the circumcircle $k$ of the triangle $BDE$. The circle $k$ intersects the line $AC$ in the points $E$ and $F$. Prove that the lines $FM$, $AD$ and $BC$ meet at one point. [i](4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)[/i]

2014 India PRMO, 16

In a triangle $ABC$, let $I$ denote the incenter. Let the lines $AI,BI$ and $CI$ intersect the incircle at $P,Q$ and $R$, respectively. If $\angle BAC = 40^o$, what is the value of $\angle QPR$ in degrees ?

2020 Yasinsky Geometry Olympiad, 1

Given a right triangle $ABC$, the point $M$ is the midpoint of the hypotenuse $AB$. A circle is circumscribed around the triangle $BCM$, which intersects the segment $AC$ at a point $Q$ other than $C$. It turned out that the segment $QA$ is twice as large as the side $BC$. Find the acute angles of triangle $ABC$. (Mykola Moroz)

2019 Korea National Olympiad, 6

In acute triangle $ABC$, $AB>AC$. Let $I$ the incenter, $\Omega$ the circumcircle of triangle $ABC$, and $D$ the foot of perpendicular from $A$ to $BC$. $AI$ intersects $\Omega$ at point $M(\neq A)$, and the line which passes $M$ and perpendicular to $AM$ intersects $AD$ at point $E$. Now let $F$ the foot of perpendicular from $I$ to $AD$. Prove that $ID\cdot AM=IE\cdot AF$.

2015 Middle European Mathematical Olympiad, 3

Let $ABCD$ be a cyclic quadrilateral. Let $E$ be the intersection of lines parallel to $AC$ and $BD$ passing through points $B$ and $A$, respectively. The lines $EC$ and $ED$ intersect the circumcircle of $AEB$ again at $F$ and $G$, respectively. Prove that points $C$, $D$, $F$, and $G$ lie on a circle.

2018 Pan African, 4

Given a triangle $ABC$, let $D$ be the intersection of the line through $A$ perpendicular to $AB$, and the line through $B$ perpendicular to $BC$. Let $P$ be a point inside the triangle. Show that $DAPB$ is cyclic if and only if $\angle BAP = \angle CBP$.

2016 Estonia Team Selection Test, 5

Let $O$ be the circumcentre of the acute triangle $ABC$. Let $c_1$ and $c_2$ be the circumcircles of triangles $ABO$ and $ACO$. Let $P$ and $Q$ be points on $c_1$ and $c_2$ respectively, such that OP is a diameter of $c_1$ and $OQ$ is a diameter of $c_2$. Let $T$ be the intesection of the tangent to $c_1$ at $P$ and the tangent to $c_2$ at $Q$. Let $D$ be the second intersection of the line $AC$ and the circle $c_1$. Prove that the points $D, O$ and $T$ are collinear

2016 Estonia Team Selection Test, 5

Let $O$ be the circumcentre of the acute triangle $ABC$. Let $c_1$ and $c_2$ be the circumcircles of triangles $ABO$ and $ACO$. Let $P$ and $Q$ be points on $c_1$ and $c_2$ respectively, such that OP is a diameter of $c_1$ and $OQ$ is a diameter of $c_2$. Let $T$ be the intesection of the tangent to $c_1$ at $P$ and the tangent to $c_2$ at $Q$. Let $D$ be the second intersection of the line $AC$ and the circle $c_1$. Prove that the points $D, O$ and $T$ are collinear

2012 Flanders Math Olympiad, 4

In $\vartriangle ABC, \angle A = 66^o$ and $| AB | <| AC |$. The outer bisector in $A$ intersects $BC$ in $D$ and $| BD | = | AB | + | AC |$. Determine the angles of $\vartriangle ABC$.