This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

2016 Bangladesh Mathematical Olympiad, 3

$\triangle ABC$ is isosceles $AB = AC$. $P$ is a point inside $\triangle ABC$ such that $\angle BCP = 30$ and $\angle APB = 150$ and $\angle CAP = 39$. Find $\angle BAP$.

2017 EGMO, 1

Let $ABCD$ be a convex quadrilateral with $\angle DAB=\angle BCD=90^{\circ}$ and $\angle ABC> \angle CDA$. Let $Q$ and $R$ be points on segments $BC$ and $CD$, respectively, such that line $QR$ intersects lines $AB$ and $AD$ at points $P$ and $S$, respectively. It is given that $PQ=RS$.Let the midpoint of $BD$ be $M$ and the midpoint of $QR$ be $N$.Prove that the points $M,N,A$ and $C$ lie on a circle.

2022 Germany Team Selection Test, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2011 IMO Shortlist, 5

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $D$ and $E$ be the second intersection points of $\omega$ with $AI$ and $BI$, respectively. The chord $DE$ meets $AC$ at a point $F$, and $BC$ at a point $G$. Let $P$ be the intersection point of the line through $F$ parallel to $AD$ and the line through $G$ parallel to $BE$. Suppose that the tangents to $\omega$ at $A$ and $B$ meet at a point $K$. Prove that the three lines $AE,BD$ and $KP$ are either parallel or concurrent. [i]Proposed by Irena Majcen and Kris Stopar, Slovenia[/i]

2020 Sharygin Geometry Olympiad, 18

Bisectors $AA_1$, $BB_1$, and $CC_1$ of triangle $ABC$ meet at point $I$. The perpendicular bisector to $BB_1$ meets $AA_1,CC_1$ at points $A_0,C_0$ respectively. Prove that the circumcircles of triangles $A_0IC_0$ and $ABC$ touch.

1997 German National Olympiad, 3

In a convex quadrilateral $ABCD$ we are given that $\angle CBD = 10^o$, $\angle CAD = 20^o$, $\angle ABD = 40^o$, $\angle BAC = 50^o$. Determine the angles $\angle BCD$ and $\angle ADC$.

2015 Dutch BxMO/EGMO TST, 4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

2022/2023 Tournament of Towns, P3

A pentagon $ABCDE$ is circumscribed about a circle. The angles at the vertices $A{}$, $C{}$ and $E{}$ of the pentagon are equal to $100^\circ$. Find the measure of the angle $\angle ACE$.

2022 Thailand TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2013 Peru MO (ONEM), 3

Let $P$ be a point inside the equilateral triangle $ABC$ such that $6\angle PBC = 3\angle PAC = 2\angle PCA$. Find the measure of the angle $\angle PBC$ .

2007 Chile National Olympiad, 6

Given an $\triangle ABC$ isoceles with base $BC$ we note with $M$ the midpoint of said base. Let $X$ be any point on the shortest arc $AM$ of the circumcircle of $\triangle ABM$ and let $T$ be a point on the inside $\angle BMA$ such that $\angle TMX = 90^o$ and $TX = BX$. Show that $\angle MTB - \angle CTM$ does not depend on $X$.

2004 Greece JBMO TST, 1

Let $ABCD$ be a convex quadrilateral with $\angle A=60^o$. Let $E$ and $Z$ be the symmetric points of $A$ wrt $BC$ and $CD$ respectively. If the points $B,D,E$ and $Z$ are collinear, then calculate the angle $\angle BCD$.

2007 Sharygin Geometry Olympiad, 9

Suppose two convex quadrangles are such that the sides of each of them lie on the perpendicular bisectors of the sides of the other one. Determine their angles,

2024 Bangladesh Mathematical Olympiad, P5

Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.

2019 Hong Kong TST, 2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2013 Middle European Mathematical Olympiad, 3

Let $ABC$ be an isosceles triangle with $AC=BC$. Let $N$ be a point inside the triangle such that $2 \angle ANB = 180 ^\circ + \angle ACB $. Let $ D $ be the intersection of the line $BN$ and the line parallel to $AN$ that passes through $C$. Let $P$ be the intersection of the angle bisectors of the angles $CAN$ and $ABN$. Show that the lines $DP$ and $AN$ are perpendicular.

2022 Abelkonkurransen Finale, 2a

A triangle $ABC$ with circumcircle $\omega$ satisfies $|AB| > |AC|$. Points $X$ and $Y$ on $\omega$ are different from $A$, such that the line $AX$ passes through the midpoint of $BC$, $AY$ is perpendicular to $BC$, and $XY$ is parallel to $BC$. Find $\angle BAC$.

2019 Korea Junior Math Olympiad., 7

Let $O$ be the circumcenter of an acute triangle $ABC$. Let $D$ be the intersection of the bisector of the angle $A$ and $BC$. Suppose that $\angle ODC = 2 \angle DAO$. The circumcircle of $ABD$ meets the line segment $OA$ and the line $OD$ at $E (\neq A,O)$, and $F(\neq D)$, respectively. Let $X$ be the intersection of the line $DE$ and the line segment $AC$. Let $Y$ be the intersection of the bisector of the angle $BAF$ and the segment $BE$. Prove that $\frac{\overline{AY}}{\overline{BY}}= \frac{\overline{EX}}{\overline{EO}}$.

2024 Bundeswettbewerb Mathematik, 3

Let $ABCD$ be a parallelogram whose diagonals intersect in $M$. Suppose that the circumcircle of $ABM$ intersects the segment $AD$ in a point $E \ne A$ and that the circumcircle of $EMD$ intersects the segment $BE$ in a point $F \ne E$. Show that $\angle ACB=\angle DCF$.

2004 IMO, 5

In a convex quadrilateral $ABCD$, the diagonal $BD$ bisects neither the angle $ABC$ nor the angle $CDA$. The point $P$ lies inside $ABCD$ and satisfies \[\angle PBC=\angle DBA\quad\text{and}\quad \angle PDC=\angle BDA.\] Prove that $ABCD$ is a cyclic quadrilateral if and only if $AP=CP$.

2006 IMO Shortlist, 5

In triangle $ABC$, let $J$ be the center of the excircle tangent to side $BC$ at $A_{1}$ and to the extensions of the sides $AC$ and $AB$ at $B_{1}$ and $C_{1}$ respectively. Suppose that the lines $A_{1}B_{1}$ and $AB$ are perpendicular and intersect at $D$. Let $E$ be the foot of the perpendicular from $C_{1}$ to line $DJ$. Determine the angles $\angle{BEA_{1}}$ and $\angle{AEB_{1}}$. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2022 Brazil National Olympiad, 2

Let $ABC$ be an acute triangle, with $AB<AC$. Let $K$ be the midpoint of the arch $BC$ that does not contain $A$ and let $P$ be the midpoint of $BC$. Let $I_B,I_C$ be the $B$-excenter and $C$-excenter of $ABC$, respectively. Let $Q$ be the reflection of $K$ with respect to $A$. Prove that the points $P,Q,I_B,I_C$ are concyclic.

2003 Junior Balkan Team Selection Tests - Romania, 4

Let $E$ be the midpoint of the side $CD$ of a square $ABCD$. Consider the point $M$ inside the square such that $\angle MAB = \angle MBC = \angle BME = x$. Find the angle $x$.

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2013 IMO Shortlist, G4

Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.