This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

1969 IMO Longlists, 46

$(NET 1)$ The vertices of an $(n + 1)-$gon are placed on the edges of a regular $n-$gon so that the perimeter of the $n-$gon is divided into equal parts. How does one choose these $n + 1$ points in order to obtain the $(n + 1)-$gon with $(a)$ maximal area; $(b)$ minimal area?

2001 May Olympiad, 4

Tags: geometry , area
Ten coins of $1$ cm radius are placed around a circle as indicated in the figure. Each coin is tangent to the circle and its two neighboring coins. Prove that the sum of the areas of the ten coins is twice the area of the circle. [img]https://cdn.artofproblemsolving.com/attachments/5/e/edf7a7d39d749748f4ae818853cb3f8b2b35b5.gif[/img]

2022 MMATHS, 2

Triangle $ABC$ has $AB = 3$, $BC = 4$, and $CA = 5$. Points $D$, $E$, $F$, $G$, $H$, and $I$ are the reflections of $A$ over $B$, $B$ over $A$, $B$ over $C$, $C$ over $B$, $C$ over $A$, and $A$ over $C$, respectively. Find the area of hexagon $EFIDGH$.

1982 Swedish Mathematical Competition, 3

Show that there is a point $P$ inside the quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal area. Show that $P$ must lie on one of the diagonals.

2017 Yasinsky Geometry Olympiad, 3

Given circle $\omega$ and point $D$ outside this circle. Find the following points $A, B$ and $C$ on the circle $\omega$ so that the $ABCD$ quadrilateral is convex and has the maximum possible area. Justify your answer.

1980 All Soviet Union Mathematical Olympiad, 287

The points $M$ and $P$ are the midpoints of $[BC]$ and $[CD]$ sides of a convex quadrangle $ABCD$. It is known that $|AM| + |AP| = a$. Prove that $ABCD$ has area less than $\frac{a^2}{2}$.

Denmark (Mohr) - geometry, 2010.1

Four right triangles, each with the sides $1$ and $2$, are assembled to a figure as shown. How large a fraction does the area of the small circle make up of that of the big one? [img]https://1.bp.blogspot.com/-XODK1XKCS0Q/XzXDtcA-xAI/AAAAAAAAMWA/zSLPpf3IcX0rgaRtOxm_F2begnVdUargACLcBGAsYHQ/s0/2010%2BMohr%2Bp1.png[/img]

1984 Tournament Of Towns, (075) T1

In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .

2005 Austria Beginners' Competition, 4

We are given the triangle $ABC$ with an area of $2000$. Let $P,Q,R$ be the midpoints of the sides $BC$, $AC$, $AB$. Let $U,V,W$ be the midpoints of the sides $QR$, $PR$, $PQ$. The lengths of the line segments $AU$, $BV$, $CW$ are $x$, $y$, $z$. Show that there exists a triangle with side lengths $x$, $y$ and $z$ and caluclate it's area.

1999 Cono Sur Olympiad, 2

Let $ABC$ be a triangle right in $A$. Construct a point $P$ on the hypotenuse $BC$ such that if $Q$ is the foot of the perpendicular drawn from $P$ to side $AC$, then the area of the square of side $PQ$ is equal to the area of the rectangle of sides $PB$ and $PC$. Show construction steps.

Durer Math Competition CD Finals - geometry, 2009.D1

Tags: geometry , area
Fencing Ferdinand wants to fence three rectangular areas. there are fences in three types, with $4$ amount of fences of each type. You will notice that there is always at least as much area it manages to enclose a total of three by enclosing three square areas (i.e., each area fencing elements of the same size to enclose it) as if it were three different, rectangular would encircle an area (i.e., use two different elements for each of the three areas). Why is this is so? When does it not matter how he fences the rectangles, in terms of the sum of the areas?

Novosibirsk Oral Geo Oly IX, 2023.1

Tags: geometry , area
In the triangle $ABC$ on the sides $AB$ and $AC$, points $D$ and E are chosen, respectively. Can the segments $CD$ and $BE$ divide $ABC$ into four parts of the same area? [img]https://cdn.artofproblemsolving.com/attachments/1/c/3bbadab162b22530f1b254e744ecd068dea65e.png[/img]

1989 Bundeswettbewerb Mathematik, 2

Tags: trapezoid , geometry , area
A trapezoid has area $2\, m^2$ and the sum of its diagonals is $4\,m$. Determine the height of this trapezoid.

1969 IMO Shortlist, 20

$(FRA 3)$ A polygon (not necessarily convex) with vertices in the lattice points of a rectangular grid is given. The area of the polygon is $S.$ If $I$ is the number of lattice points that are strictly in the interior of the polygon and B the number of lattice points on the border of the polygon, find the number $T = 2S- B -2I + 2.$

2009 Swedish Mathematical Competition, 1

Tags: geometry , square , area
Five square carpets have been bought for a square hall with a side of $6$ m , two with the side $2$ m, one with the side $2.1$ m and two with the side $2.5$ m. Is it possible to place the five carpets so that they do not overlap in any way each other? The edges of the carpets do not have to be parallel to the cradles in the hall.

May Olympiad L1 - geometry, 2006.2

A rectangle of paper of $3$ cm by $9$ cm is folded along a straight line, making two opposite vertices coincide. In this way a pentagon is formed. Calculate it's area.

2018 Hanoi Open Mathematics Competitions, 9

There are three polygons and the area of each one is $3$. They are drawn inside a square of area $6$. Find the greatest value of $m$ such that among those three polygons, we can always find two polygons so that the area of their overlap is not less than $m$.

2008 Argentina National Olympiad, 3

On a circle of center $O$, let $A$ and $B$ be points on the circle such that $\angle AOB = 120^o$. Point $C$ lies on the small arc $AB$ and point $D$ lies on the segment $AB$. Let also $AD = 2, BD = 1$ and $CD = \sqrt2$. Calculate the area of triangle $ABC$.

2017 Oral Moscow Geometry Olympiad, 5

Tags: geometry , area , square
Two squares are arranged as shown. Prove that the area of the black triangle equal to the sum of the gray areas. [img]https://2.bp.blogspot.com/-byhWqNr1ras/XTq-NWusg2I/AAAAAAAAKZA/1sxEZ751v_Evx1ij7K_CGiuZYqCjhm-mQCK4BGAYYCw/s400/Oral%2BSharygin%2B2017%2B8.9%2Bp5.png[/img]

1992 ITAMO, 2

A convex quadrilateral of area $1$ is given. Prove that there exist four points in the interior or on the sides of the quadrilateral such that each triangle with the vertices in three of these four points has an area greater than or equal to $1/4$.

1991 Tournament Of Towns, (315) 1

Tags: geometry , area , cyclic
In an inscribed quadrilateral $ABCD$ we have $BC = CD$. Prove that the area of the quadrilateral is equal to $\frac{(AC)^2 \sin A}{2}$ (D. Fomin, Leningrad)

2012 Dutch BxMO/EGMO TST, 4

Let $ABCD$ a convex quadrilateral (this means that all interior angles are smaller than $180^o$), such that there exist a point $M$ on line segment $AB$ and a point $N$ on line segment $BC$ having the property that $AN$ cuts the quadrilateral in two parts of equal area, and such that the same property holds for $CM$. Prove that $MN$ cuts the diagonal $BD$ in two segments of equal length.

1993 IMO Shortlist, 7

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio \[\frac{AB \cdot CD}{AC \cdot BD}, \] and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

2011 IMAR Test, 2

The area of a convex polygon in the plane is equally shared by the four standard quadrants, and all non-zero lattice points lie outside the polygon. Show that the area of the polygon is less than $4$.

1997 Chile National Olympiad, 3

Tags: trapezoid , area , geometry
Let $ ABCD $ be a quadrilateral, whose diagonals intersect at $ O $. The triangles $ \triangle AOB $, $ \triangle BOC $, $ \triangle COD $ have areas $1, 2, 4$, respectively. Find the area of $ \triangle AOD $ and prove that $ ABCD $ is a trapezoid.